- 级别:IEEE
- 时间:CVPR 2023
- 机构:上海交通大学、阿里巴巴
- 下载:MD-VQA: Multi-Dimensional Quality Assessment for UGC Live Videos
摘要
用户生成内容(UGC)的直播视频在拍摄过程中常常会受到各种失真的影响,因此展现出多样的视觉质量。这些源视频在分发给最终用户之前,还会被媒体服务器提供商进一步压缩和转码。由于UGC直播视频的蓬勃发展,需要有效的视频质量评估(VQA)工具来监控并在分发过程中感知优化直播视频。在本文中,我们通过构建第一个主观的UGC直播VQA数据库并开发一个有效的评估工具来解决UGC直播VQA问题。具体来说,我们在真实的直播场景中收集了418个源UGC视频,并为后续的主观VQA实验生成了3762个不同比特率的压缩视频。基于构建的数据库,我们开发了一个多维VQA(MD-VQA)评估器,分别从语义、失真和运动方面来衡量UGC直播视频的视觉质量。广泛的实验结果表明,MD-VQA在我们的UGC直播VQA数据库以及现有的压缩UGC VQA数据库上都实现了最先进的性能。
介绍
随着社交媒体应用的快速发展和视频拍摄及处理技