原码:最高位表示符号位,其余位表示值。比如用8位二进制表示+1和-1:[+1] = 0000 0001,[-1] = 1000 0001。正数变负数转换的过程我们只需要把最高位由0变为1。由负数变为正数,只需要把最高位1变为0。在原码中0值有[+0]和[-0]两种形式:[+0] = 0000 0000,[-0] = 1000 0000。八位二进制表示整数的范围为[-127,+127],在此范围中包含元素的个数少一个。因为原码中零的存储形式有两种。我们使用原码做加法时,让符号位也参与运算。比如:[+1] + [-1] = 0000 0001 + 1000 0001 = 1000 0010 = [-2]。最后的运算结果出错。因此我们引入了反码。
反码:正数的反码形式和正数的原码形式一样,负数的反码形式是在原码的基础上,符号位不变,其余各个位取反。比如:[+1] = 0000 0001,[-1] = 1111 1110。在反码中0值也有[+0]和[-0]两种形式:[+0] = 0000 0000,[-0] = 1111 1111。八位二进制表示整数的范围为[-127,+127],在此范围中包含的元素的个数少一个。因为反码中零的存储形式有两种。我们使用反码做加法时,让符号位也参与运算。比如:[+1] + [-1] = 0000 0001 + 1111 1110 = 1111 1111 = [-0]。虽然结果正确,为了解决零的两种存储形式问题,因此我们引入了补码。
补码:补码是计算机中存储整数的编码方式。使用补码对整数进行加减运算非常的方便。正数的补码形式就是其本身,负数的补码是在其原码的基础上,符号位不变,其余各位取反,最后加1。(即在反码的基础上加1)。比如:[+1] = 0000 0001,[-1] = 1111 1110 + 1 = 1111 1111。八位二进制的补码可以表示的整数的范围[-128,+127]。零的存储形式只有一种[0] = 0000 0000。用1000 0000表示最小值(-128)。我们使用补码做加法时,比如:[+1] + [-1] = 0000 0001 + 1111 1111 = 0000 0000 = 0。对于编程中常用的32位int类型,可以表示的范围是:[-2^31,2^31 - 1]。
原码反码和补码
最新推荐文章于 2024-06-02 21:17:37 发布