数据结构与算法C++(十八)分而治之

本文探讨了分而治之算法的基本原理,如何通过分解问题、求解小实例并组合结果来优化复杂度,涉及递归方程和复杂度下限。它展示了与软件模块化设计的相似之处,并介绍了其在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分而治之

分而治之算法把一个问题实例分解为若干个小型而独立的实例,从而通过推导最小最大问题和排序问题的复杂度下限,来证明用分而治之算法能够得到这两个问题的最优解。

一、算法思想

分而治之方法与软件设计的模块化方法非常相似。一个问题的小实例可以用直接方法求解。而要解决一个问题的大实例,可以(1)把它分成两个或多个更小的实例;(2)分别解决每个小实例;(3)把这些小实例的解组合成原始大实例的解。

二、应用

三、解递归方程

四、复杂度的下限

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值