python的2.x与3.x的安装与一些基本常识和集合很多模块的安装包。

本文详细介绍Python 2.x和3.x版本的安装步骤,并针对Windows环境提供了详细的配置指南。此外,还介绍了如何安装pip以及一系列常用科学计算库,如NumPy、SciPy等,并给出了在Visual Studio中配置Python开发环境的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    其中的2.x跟3.x的区别是很大的,因为现在网上的很多代码是跟2.x编写的,如果安装新版的则可能会使用不了2.x的,例如:cPickle模块是2.x的,而新版的3.x是不包含这个模块,其新的模块是pickle。

一、python2.x与pip的安装。

在大二的时候接触过一段时间的Python,最近又开始玩起了这门语言。总的来说,个人很喜欢Python的语言风格,但是这门语言对于windows并不算很友好,因为如果是初学者在windows环境下安装,简直是折磨人,会遇到各种蛋疼的情况。本文希望提供傻瓜式的教程,能够令读者成功安装Python和pip。

第一步,我们先来安装Python,博主选择的版本是最新的3.4.2版本。windows下面的Python安装一般是通过软件安装包安装而不是命令行,所以我们首先要在Python的官方主页上面下载最新的Python安装包。下载地址是:https://www.python.org/downloads/

在下载完成之后,一直点击下一步就OK了。在安装完成之后,打开控制台,输入“Python”,我们能够看到下面的效果:

原因很简单,是因为python.exe文件在 Python 目录下,我们还没有设置环境变量。所以我们需要手动添加环境变量:鼠标右键我的电脑  -> 属性 -> 点击高级系统设置 -> 点击环境变量 -> 点击PATH -> 在最后面加上我们的Python安装路径 -> 点击确定。用一张图来表示就是:

在这个过程中需要注意的问题是,添加PATH路径的时候,要在最后面添加一个分号。现在我们再次在浏览器里面输入“Python”,就能直接在控制台出入命令了:

第二步,我们安装pip。我们同样需要在Python的官网上去下载,下载地址是:https://pypi.python.org/pypi/pip#downloads :


下载完成之后,解压到一个文件夹,用CMD控制台进入解压目录,输入:

python setup.py install

其中如何通过CMD进入到解压目录,其方法如下:


安装好之后,我们直接在命令行输入pip,同样会显示‘pip’不是内部命令,也不是可运行的程序。因为我们还没有添加环境变量。

按照之前介绍的添加环境变量的方法,我们在PATH最后添加(这是看其安装位置的,不同的安装位置其路径不同):

C:\Python34\Scripts;

到现在我们才算完整安装好了pip:

第三步,安装一些Python的包,比如Tornado这个web框架,此时可以通过pip指令来安装:

二:python3.x的安装:

其安装很简单,其中的pip指令集已经被集成到安装包里了,其如下:


三:python的基本常识。

python是没有可视化的IDE,其自身的IDE是如下:


其跟VS的界面是不同的,这时假如我们需要可视化的话就需要把其配置到VS上或其他IDE上。则在VS上配置的总

流程是:

1.安装python 2.7.11  (安装python与pip)

https://www.python.org/downloads/


2.安装pip

参照 http://www.tuicool.com/articles/eiM3Er3


3.安装numpy

http://sourceforge.NET/projects/numpy/files/NumPy/1.10.2/ 

其也可以使用pip指令:

pip install numpy


4.安装scipy(希望在写的文章能中SCI。。。)

https://github.com/scipy/scipy/releases


5.安装scikit-learn

http://scikit-learn.org/stable/install.html 直接在命令行输入

pip install -U scikit-learn

这些包需要按顺序安装,因为其有依赖关系,否则会导致安装失败!!

6.安装VS2013的python插件 (这样的话才能通过VS调用python的各个模块)

http://microsoft.github.io/PTVS/ 参照博客 http://www.bkjia.com/Pythonjc/883437.html

7.安装ipython+pandas

pip install ipython

http://my.oschina.Net/u/1431433/blog/189337 使用pip安装这个博客给出的一些依赖库即可

  到此位置大功告成。

B、python可以使用opencv的库模块,其分别是cvs、Image  

其中Image模块下载地址是:http://www.pythonware.com/products/pil/index.htm


例子:

import Image  
from matplotlib import pyplot as plt  
if __name__ == "__main__":  
    img = Image.open("./Alex.jpg")  
    img_gray = img.convert("L")  
    fig = plt.figure()  
    ax = fig.add_subplot(121)  
    ax.imshow(img)  
    ax.set_title("hei,i'am the first")  
  
    ax = fig.add_subplot(222)  
    ax.imshow(img_gray, cmap="gray")#以灰度图显示图片  
    ax.set_title("hei,i'am the second")#给图片加titile  
  
    ax = fig.add_subplot(224)  
    ax.imshow(img_gray, cmap="gray")#以灰度图显示图片  
    ax.set_title("hei,i'am the third")#给图片加titile  
    #plt.axis("off")#不显示刻度  
    plt.show()#显示刚才所画的所有操作,这句一定需要,要不显示不了图像。画布不会出来
效果:

2、深度学习的例子: 使用的是python2.x版本的

import cPickle  
import gzip  
import numpy as np  
import matplotlib.pyplot as plt  
f = gzip.open('mnist.pkl.gz', 'rb')   //这是数字识别的样本库,可网上下载。
train_set, valid_set, test_set = cPickle.load(f)  
f.close()  
tx,ty=train_set;  
  
#查看训练样本  
print np.shape(tx)#可以看到tx大小为(50000,28*28)的二维矩阵  
print np.shape(ty)#可以看到ty大小为(50000,1)的矩阵  
#图片显示  
A=tx[8].reshape(28,28)#第八个训练样本  
Y=ty[8]  
print Y  
plt.imshow(A,cmap='gray')#显示手写字体图                                                                               plt.show(); //这句一定要,否则显示不了图像。

3、下载是会遇到的后缀代表的意思:



四、集合很多模块的安装包,自己尝试下载,但是太慢,最后失败了。


panda的使用教程:http://www.cnblogs.com/chaosimple/p/4153083.html



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值