Tensorflow 安装过程中遇到的问题和解决方法

本文详细介绍了如何在Python 3.6环境下安装与CUDA 8.0兼容的TensorFlow 1.4.1版本。通过使用特定的.whl文件并解决libcudnn.so.6依赖问题,确保了安装过程的顺利进行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 为了不纠缠 python 的各种包依赖关系,直接安装 Miniconda,  其中,Python 版本为 3.6.*

2. 如果直接用官方网站给出的安装方法:

pip install -U tensorflow

它会自动安装与 python 3.6.* 对应的最新版 tensorflow 1.9, 而 1.9 会要求 cuda.so.9 (即cuda 9.0), 我的机器上只有 cuda.so.8 (即 cuda 8.0 ),于是网上搜索,tensorflow 1.4.* 能支持 cuda 8.0, 于是安装 tensorflow 1.4.1

3. pip 安装 tensorflow 1.4.1

pip install --ignore-installed https://storage.googleapis.com/tensorflow_gpu/linux/gpu/tensorflow_gpu-1.4.1-cp36-cp36m-manylinux1_x86_64.whl

各种报错

解决办法:手动安装 .whl 软件压缩包

到 清华大学软件镜像站点找合适自己的压缩包,清华大学软件镜像网址:https://pypi.tuna.tsinghua.edu.cn/simple/

tensorflow_gpu-1.4.1-cp36-cp36m-manylinux1_x86_64.whl

其中,cp36 表示 python 3.6,x86_64 表示 64 位。

下载,然后用 pip 命令进行安装:

pip install --ignore-installed tensorflow_gpu-1.4.1-cp36-cp36m-manylinux1_x86_64.whl

安装成功,然后 import tensorflow as tf 报错:

ImportError: libcudnn.so.6: cannot open shared object file: No such file or directory

找不到 libcudnn.so.6 ? 于是手工寻找 

find /usr -name libcudnn.so.6

找到这个 libcudnn.so.6 位于 /usr/local/cuda-8.0/cudnn6 文件夹,于是我们需要设置 LD_LIBRARY_PATH:

gedit ~/.bashrc
export LD_LIBRARY_PATH = $LD_LIBRARY_PATH:/usr/local/cuda-8.0/cudnn6
重新 import tensorflow as tf, 没问题,成功!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值