黑马程序眼_多线程小结练习

本文介绍了一个使用Java实现的线程间通讯示例。通过一个共享资源对象,输入线程设置属性,输出线程读取并打印这些属性。利用synchronized块、wait和notify方法确保线程间的正确交互。
package com.itpractice;


/*
 * 线程间通讯:
 * 其实就是多个线程在操作同一个资源,但是操作的动作不同
 */
class Res {
String name;
String sex;
boolean flag = false;
int x = 0;

// public void setName(String name){
// this.name = name;
// }
// public String getName(){
// return name;
// }
//
// public void setSex(String sex){
// this.sex = sex;
// }
// public String getSex(){
// return sex;
// }
}


class Input implements Runnable {


private Res r;


public Input(Res r) {
this.r = r;
}


public void run() {
boolean b = true;
while (r.x < 10) {
synchronized(r){
if(r.flag)
try {
r.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
if(b) {
r.name = "yangq";
r.sex = "woman";
} else {
r.name = "jinglt";
r.sex = "man";
}
b = !b;
r.flag = true;
r.notify();
}
}
}
}


class Output implements Runnable {


private Res r;


public Output(Res r) {
this.r = r;
}



public void run() {
while(r.x < 10){
synchronized(r){
if(!r.flag)
try {
r.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(r.name + "------" + r.sex);
r.flag = false;
r.notify();
}
r.x++;
}
}
}


public class MultiThreadDemo {


public static void main(String[] args) {
Res r = new Res();


Input in = new Input(r);
Output ou = new Output(r);


Thread t1 = new Thread(in);
Thread t2 = new Thread(ou);


t1.start();
t2.start();


}


}
内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值