Description of a Poisson Imagery Super Resolution Algorithm
1. 论文的研究目标与实际意义
1.1 核心研究目标
论文旨在解决衍射极限下的空间频率信息恢复问题(Recovery of Spatial Frequencies Beyond the Diffraction Limit)。传统图像复原仅能修正衍射极限内的光学传递函数(OTF, Optical Transfer Function)退化,而该研究提出一种基于泊松噪声模型的最大后验估计(MAP, Maximum a Posteriori)算法,突破衍射极限限制,实现超分辨率(Super-Resolution, SR)。
1.2 拟解决的实际问题
- 信息缺失:成像系统受衍射极限约束,丢失物体高频细节。
- 噪声干扰:光子计数场景(如天文观测、低光成像)存在泊松噪声,传统线性算法(如维纳滤波)失效。
- 模型适配性:现有超分辨率算法(如Gerchberg迭代)缺乏对光子噪声的显式建模。
1.3 产业意义
应用领域 | 具体价值 |
---|---|
遥感成像 | 提升卫星/航空影像分辨率,减少硬件成本(如无需更大口径镜头) |
医学影像 | 增强显微成像细节(如细胞结构观察),推动病理诊断精度 |
安防监控 | 从低分辨率监控视频中恢复人脸、车牌等关键信息 |
天文观测 | 突破望远镜衍射极限,获取更清晰星体图像 |
2. 基础模型、创新方法
2.1 基础模型框架
2.1.1 成像系统的离散化建模
论文采用严格离散采样模型:
- 图像采样:探测器间距 T T T 满足 Nyquist 准则(衍射极限约束),采样点为 g ( j T ) , j = 1 , 2 , . . . , M g(jT),\, j=1,2,...,M g(jT),j=1,2,...,M
- 对象超采样:为恢复超分辨率信息,对象采样间隔为 T / α T/\alpha T/α( α > 1 \alpha>1 α>1),采样点为 f ( k T / α ) , k = 1 , 2 , . . . , α N f(kT/\alpha),\, k=1,2,...,\alpha N f(kT/α),k=1,2,...,αN
- 点扩散函数(PSF)适配: h h h 在 T / α T/\alpha T/α 网格采样,确保与 f f f 卷积兼容
2.1.2 泊松统计模型
基于光子计数物理过程建立概率模型。贝叶斯定理:
p ( f ∣ g ) = p ( g ∣ f ) p ( f ) p ( g ) p(f\mid g)=\frac{p(g\mid f) p(f)}{p(g)} p(f∣g)=p(g)p(g∣f)p(f)
其中:
- p ( f ) p(f) p(f):对象的先验概率密度函数(pdf),假设为泊松分布:(式3):
p ( f ) = ∏ k = 1 α N f ( k T / α ) ‾ f ( k T / α ) exp ( − f ( k T / α ) ‾ ) f ( k T / α ) ! p(f)=\prod_{k=1}^{\alpha N}\frac{ {\overline{f(k T/\alpha)}}^{f(k T/\alpha)}\exp(-\overline{f(k T/\alpha)})}{f(k T/\alpha)!} p(f)=k=1∏αNf(kT/α)!f(kT/α)f(kT/α)exp(−f(kT/α))
其中 f ( k T / α ) ‾ \overline{f(kT/\alpha)} f(kT/α) 是位置 k k k 的平均光子通量(Unknown Mean Photon Flux) - p ( g ∣ f ) p(g\mid f) p(g∣f):成像似然函数,同样为泊松分布:(式4):
p ( g ∣ f ) = ∏ j = 1 M ( ∑ k = 1 α N h ( j T − k T / α ) f ( k T / α ) ) g ( j T ) exp ( − ∑ k = 1 α N h ( j T − k T / α ) f ( k T / α ) ) g ( j T ) ! p(g\mid f)=\prod_{j=1}^{M}\frac{\left(\sum_{k=1}^{\alpha N} h(j T-k T/\alpha) f(k T/\alpha)\right)^{g(j T)}\exp\left(-\sum_{k=1}^{\alpha N} h(j T-k T/\alpha) f(k T/\alpha)\right)}{g(j T)!} p(g∣f)