A Three-Dimensional Forward-Looking Imaging Algorithm Based on 2D Iterative Adaptive Approach
1. 论文研究目标与产业意义
1.1 核心问题
论文旨在解决机载平面阵列雷达在三维前视成像中方位-俯仰分辨率不足的问题。传统方法(如2D-FFT)受限于天线物理孔径和傅里叶变换的旁瓣效应,导致相邻目标在方位和俯仰方向难以分辨。本文提出一种基于二维迭代自适应方法(2D Iterative Adaptive Approach, 2D-IAA)的算法,通过单快照超分辨估计提升分辨率。
1.2 产业意义
- 导弹制导:需实时高分辨识别前视区域目标
- 地质勘探:提升地形三维重建精度
- 无人机避障:增强复杂环境感知能力
2. 创新方法与模型设计
2.1 总体框架
提出 基于2D-IAA的三维前视成像算法,核心流程分为三阶段:
- 距离向脉冲压缩:提升距离分辨率
- 单快拍二维超分辨处理:
- 对每个距离-脉冲单元(Range-Pulse Cell)的 M 1 × M 2 M_1 \times M_2 M1×M2 维阵列数据
- 应用 2D-IAA(二维迭代自适应方法) 生成方位-俯仰超分辨谱
- 波束扫描累积:
- 按瞬时波束中心位移对齐叠加多脉冲谱
2.2 信号模型构建
2.2.1 平面阵列几何与导向矢量
- 坐标系定义(图1):
- 平台沿 y 轴运动
- 平面阵列法线平行于 z 轴
- 方位角 φ \varphi φ(x-y平面),俯仰角 θ \theta θ(z-y平面)
- 相位差模型(式(1)):
Δ ϕ m 1 m 2 = − 2 π d λ [ ( m 1 − 1 ) sin θ i cos φ j + ( m 2 − 1 ) sin φ j ] \Delta\phi_{m_1 m_2} = -2\pi\frac{d}{\lambda}\left[(m_1-1)\sin\theta_i\cos\varphi_j + (m_2-1)\sin\varphi_j\right] Δϕm1m2=−2πλd[(m1−1)sinθicosφj+(m2−1)sinφj]
其中 m 1 = 1 , … , M 1 m_1=1,\dots,M_1 m1=1,…,M1, m 2 = 1 , … , M 2 m_2=1,\dots,M_2 m2=1,…,M2 - 波数域变量(式(2)):
u i j = 2 π d λ sin θ i cos φ j , v i j = 2 π d λ sin φ j u_{ij} = \frac{2\pi d}{\lambda}\sin\theta_i\cos\varphi_j, \quad v_{ij} = \frac{2\pi d}{\lambda}\sin\varphi_j uij=λ2πdsinθicosφj,vij=λ2πdsinφj - 导向矢量分解:
- 俯仰导向矢量(式(3)):
a z ( θ i , φ j ) = [ 1 , e − j u i j , ⋯ , e − j ( M 1 − 1 ) u i j ] T a_z(\theta_i,\varphi_j) = \left[1, e^{-ju_{ij}}, \cdots, e^{-j(M_1-1)u_{ij}}\right]^T az(θi,φj)=[1,e−juij,⋯,e−j(
- 俯仰导向矢量(式(3)):