本文项目编号 25004 ,文末自助获取源码 \color{red}{25004,文末自助获取源码} 25004,文末自助获取源码
一、系统介绍
地铁客流数据分析与预测系统,使用Python作为后端编程语言,结合Vue.js和Django框架进行开发,旨在为管理员和用户提供便捷的地铁客流管理与预测工具。系统包括登录注册模块、用户管理模块、地铁数据模块、地铁预测模块以及可视化大屏模块,以确保用户能够轻松访问和管理地铁客流数据。通过地铁数据模块,系统能够有效收集和分析实时客流信息,而地铁预测模块则利用先进的算法对未来客流趋势进行准确预测。可视化大屏幕模块进一步提升了数据展示的直观性和用户体验,使管理员和用户能够快速做出决策,为地铁运营提供关键支持。
源码下载:https://download.csdn.net/download/qq_41464123/91447946
二、系统录屏
三、启动教程
四、功能截图
五、文案资料
5.1 选题背景
随着城市化进程的加快,地铁作为城市公共交通的重要组成部分,承载着越来越多的客流量,因此对地铁客流数据的分析与预测显得尤为重要。有效的客流数据分析预测系统能够帮助交通管理部门实时掌握地铁线路的客流变化,合理调配运力,提高运营效率,降低拥堵风险。同时,通过对历史客流数据的挖掘,系统可以预测高峰时段和特殊事件对客流的影响,进而制定科学的运营策略和应急预案。此外,客流数据分析还可以为城市规划提供支持,帮助决策者优化地铁网络布局和站点设置,以更好地满足居民的出行需求。随着大数据技术的发展,构建一个高效的地铁客流数据分析预测系统,不仅能够提升地铁运营的智能化水平,还能为城市的可持续发展提供重要保障。
5.2 国内外研究现状
目前国内外地铁客流数据分析预测系统的研究现状各具特色。在国外,许多城市已借助先进的数据采集技术和分析工具,建立了完善的客流监测系统,利用大数据分析和机器学习算法,对地铁客流进行实时监测与预测。例如,伦敦和纽约等城市通过历史数据与实时数据结合,成功实现了客流高峰期的准确预测,从而优化了列车调度与服务。此外,国外研究还关注到了社交媒体数据与客流变化的关系,探讨特殊事件对地铁客流的影响。国内在这一领域的研究同样迅速发展,许多大城市如北京、上海等通过公共交通卡数据、手机定位数据等多元化信息,构建了较为完善的客流分析模型,旨在提升地铁的运营效率和乘客体验。同时,国内研究者也在探索基于深度学习的客流预测方法,以提高预测的准确性。然而,整体来看,国内在数据的多维融合和模型的实时应用方面仍有提升空间,需要进一步加强技术研发与实践探索,以适应日益增长的城市交通需求。
六、核心代码
6.1 查询数据
@RequestMapping("/lists")
public R list( GukeEntity guke){
EntityWrapper<GukeEntity> ew = new EntityWrapper<GukeEntity>();
ew.allEq(MPUtil.allEQMapPre( guke, "guke"));
return R.ok().put("data", gukeService.selectListView(ew));
}
6.2 新增数据
@RequestMapping("/add")
public R add(@RequestBody GukeEntity guke, HttpServletRequest request){
guke.setId(new Date().getTime()+new Double(Math.floor(Math.random()*1000)).longValue());
//ValidatorUtils.validateEntity(guke);
GukeEntity user = gukeService.selectOne(new EntityWrapper<GukeEntity>().eq("zhanghao", guke.getZhanghao()));
if(user!=null) {
return R.error("用户已存在");
}
guke.setId(new Date().getTime());
gukeService.insert(guke);
return R.ok();
}
6.3 删除数据
@RequestMapping("/delete")
public R delete(@RequestBody Long[] ids){
gukeService.deleteBatchIds(Arrays.asList(ids));
return R.ok();
}
本文项目编号 25004,希望给大家带来帮助!