poj 1463树形dp入门

本文深入解析树形动态规划的基本原理与应用,通过一道典型题目详细阐述动态转移方程的构建过程。从AC代码中学习如何利用递归深度优先搜索进行节点遍历,实现最优解的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一道简单的树形dp
动态转移方程:dp[root][1]+=min(dp[id][1],dp[id][0]) dp[root][0]+=dp[root][1] 若根节点放哨兵,则它的孩子节点有两种选择,若不放,呢么他的孩子节点只有一种选择

AC代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
using namespace std;
const int maxn=2e3+5;
vector<int>vec[maxn];
int dp[maxn][2];//两种状态
int vis[maxn];//判断根节点
int n;
void dfs(int root)
{
    dp[root][0]=0;
    dp[root][1]=1;
    for(int i=0;i<vec[root].size();i++)
    {
        int id=vec[root][i];
        dfs(id);
        dp[root][1]+=min(dp[id][1],dp[id][0]);
        dp[root][0]+=dp[id][1];

    }
}
int main()
{
    while(~scanf("%d",&n))
    {
        memset(vis,0,sizeof(vis));
        memset(vec,0,sizeof(vec));
        memset(dp,0,sizeof(dp));
        for(int i=0;i<n;i++)
        {
            int u,m,v;
            scanf("%d:(%d)",&u,&m);
            while(m--)
            {
                scanf("%d",&v);
                vis[v]=1;
                vec[u].push_back(v);
            }
        }
        int root;
        for(int i=0;i<n;i++)
        {
            if(!vis[i])
            {
                root=i;
                break;
            }
        }
        dfs(root);
        printf("%d\n",min(dp[root][0],dp[root][1]));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值