3D-Face-Reconstruction-with-the-Geometric-Guidance-of-Facial-Part-Segmentation 源码编译记录

目录

编译结果

3DDFA-V3 项目环境问题解决总结

问题描述

解决方案

1. 环境修复步骤

2. 验证结果

3. 当前状态

改进建议

1. 依赖管理

2. 错误处理

3. 文档完善

4. 兼容性改进

使用说明

基本使用

参数说明

项目架构

技术栈

注意事项

参考链接


编译结果

3DDFA-V3 项目环境问题解决总结

问题描述

在运行3DDFA-V3项目时遇到了以下环境问题:

  1. Cython模块缺失 - 编译cython_renderer时缺少Cython
  2. NumPy版本兼容性问题 - NumPy 2.0.2与编译的模块不兼容
  3. OpenCV与NumPy兼容性 - cv2模块无法正确导入

解决方案

1. 环境修复步骤

# 1. 降级NumPy到兼容版本
pip install 'numpy<2.0'

# 2. 安装Cython
pip install cython

# 3. 重新安装OpenCV
pip uninstall opencv-python -y
pip install opencv-python==4.9.0.80

# 4. 编译cython_renderer
cd util/cython_renderer/
python setup.py build_ext -i
cd ../..

2. 验证结果

  • ✅ NumPy版本: 1.26.4 (兼容)
  • ✅ Cython版本: 3.1.2 (已安装)
  • ✅ OpenCV版本: 4.9.0 (已修复)
  • ✅ cython_renderer编译成功
  • ✅ demo.py可以正常启动

3. 当前状态

程序现在可以正常运行,但有以下警告:

  • CUDA兼容性警告:RTX 4090与当前PyTorch版本不完全兼容
  • 这是警告信息,不影响程序运行

改进建议

1. 依赖管理

  • 在requirements.txt中明确指定NumPy版本范围:numpy>=1.20,<2.0
  • 添加Cython作为必需依赖
  • 考虑使用conda环境管理,避免版本冲突

2. 错误处理

  • 在setup.py中添加依赖检查
  • 提供更友好的错误提示信息
  • 添加环境验证脚本

3. 文档完善

  • 在README中添加环境问题解决方案
  • 提供一键环境修复脚本
  • 添加常见问题FAQ

4. 兼容性改进

  • 支持NumPy 2.x版本
  • 更新CUDA支持到最新版本
  • 提供CPU-only运行选项

使用说明

基本使用

python demo.py --inputpath examples/ --savepath examples/results --device cpu --iscrop 1 --detector retinaface --ldm68 1 --ldm106 1 --ldm106_2d 1 --ldm134 1 --seg_visible 1 --seg 1 --useTex 1 --extractTex 1 --backbone resnet50

参数说明

  • --inputpath: 输入图像文件夹路径
  • --savepath: 输出结果保存路径
  • --device: 运行设备 (cuda/cpu)
  • --iscrop: 是否裁剪输入图像
  • --detector: 人脸检测器 (retinaface/mtcnn)
  • --backbone: 重建网络 (resnet50/mbnetv3)

项目架构

3DDFA-V3/
├── demo.py                 # 主程序入口
├── requirements.txt        # 依赖列表
├── util/                   # 工具模块
│   ├── cython_renderer/   # Cython渲染器
│   ├── cpu_renderer.py    # CPU渲染器
│   └── nv_diffrast.py     # NVIDIA渲染器
├── model/                  # 模型文件
├── data/                   # 数据文件
└── examples/              # 示例文件

技术栈

  • 深度学习框架: PyTorch
  • 计算机视觉: OpenCV, scikit-image
  • 数值计算: NumPy, SciPy
  • 渲染: nvdiffrast, Cython渲染器
  • 人脸检测: RetinaFace, MTCNN

注意事项

  1. 确保使用Python 3.8+版本
  2. 推荐使用conda环境管理依赖
  3. GPU用户注意CUDA版本兼容性
  4. 首次运行需要下载预训练模型

参考链接

3DDFA-V3——基于人脸分割几何信息指导下的三维人脸重建-CSDN博客

 C# OpenCvSharp 部署3D人脸重建3DDFA-V3 - 知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yantuguiguziPGJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值