- 博客(548)
- 收藏
- 关注
原创 【大模型索引简介】
大模型索引是检索增强生成(RAG)的核心环节,作为外部知识库与大模型对话的"导航系统"。它通过结构化组织数据,解决大模型记忆有限、知识庞杂的问题。索引从数据源、技术、模型交互和应用四个维度展开,涉及向量/关键词/混合索引等技术,应用于企业搜索、智能客服等场景。其核心流程是将用户查询向量化后检索索引,拼接结果输入大模型生成答案。简言之,索引是连接问题与答案的关键桥梁,实现高效知识检索与语义对齐。
2025-08-30 11:00:07
462
原创 大模型项目失败的主要原因
大模型项目失败主要源于三大模块问题:战略与认知偏差(技术驱动而非业务导向、低估落地难度)、技术与执行失衡(过度设计、忽视验证)、组织与资源错配(团队协作不足、资源分散)。这三个模块相互影响,战略偏差导致技术方向错误,执行问题加剧风险,而组织问题放大前两者的负面后果,最终导致项目失败。成功的项目需要平衡业务价值、技术可行性和组织协同。
2025-08-28 11:30:03
294
原创 【ICL、CPT、Finetune在参数更新、数据要求、效率、灵活度、成本、实用性上的区别?】
本文对比了三种自然语言处理方法:ICL、CPT和Finetune。ICL不更新参数,仅依赖上下文提示,适合小样本快速验证;CPT仅更新prompt参数,适合中小样本和频繁任务切换;Finetune更新全/部分参数,需大量数据但性能最优。三者参数更新量依次增加,数据需求递增,灵活性递减,成本递增。ICL训练成本为0但推理慢,CPT训练快推理正常,Finetune训练慢但推理高效。选择方法时需权衡数据量、效率、成本与灵活性。
2025-08-26 11:04:38
296
原创 【ICL英文含义是什么?】
ICL(In-Context Learning)指大语言模型不调整参数,仅通过提示中的示例学习并完成任务的能力。其特点包括无需微调、依赖上下文示例和快速适应新任务。例如提供英文翻译示例后,模型能根据上下文生成正确译文。这种学习方式让AI快速掌握新技能而无需重新训练。
2025-08-26 10:46:23
290
原创 【SFT英文全称是什么?有什么含义?】
摘要:SFT(Supervised Fine-Tuning)即监督微调,指基于预训练模型,使用带标签数据对模型进行精细化调整,使其在特定任务上表现更优。S代表监督学习,使用标注数据明确输入输出映射;F指微调,在已有模型上小幅优化;T表示参数调优。SFT是生成式AI训练的第一步,可提高任务准确性,后续常结合RLHF进一步优化模型表现。
2025-08-26 10:25:45
172
原创 【适合生成式 AI的场景?为什么?】
生成式AI适合需要创意输出、信息整合和个性化表达的场景,如内容创作、人机交互、专业辅助、开发工程、个性化推荐和虚拟模拟等。这些任务通常没有唯一正确答案,强调多样性和效率提升,但对绝对精准度要求不高。在需要100%准确性的领域(如医疗诊断),AI仅能作为辅助工具。
2025-08-26 10:12:24
277
原创 公理、公设、定理、定律、逻辑、推理是什么(汉语词典中的解释)?他们之间的关系和区别?
本文系统梳理了公理、公设、定理、定律、逻辑和推理等概念的定义与区别。公理和公设是理论体系的出发点,不需证明;定理是通过逻辑推理从公理得出的数学结论;定律则是通过观察归纳总结的科学规律。逻辑是研究的思维规律和推理工具,推理则是运用逻辑从已知推出新结论的过程。这些概念在数学和自然科学中各有其功能与地位,共同构成了完整的知识体系。
2025-08-26 09:01:32
332
原创 【人工智能AI、机器学习ML、深度学习DL、基础模型FM、LLM、GPT、Generative AI 分别是什么?他们之间的关系是什么?】
本文系统梳理了人工智能领域的关键概念及其层级关系。人工智能(AI)是总括概念,机器学习(ML)是其子集,通过数据自动学习;深度学习(DL)作为ML的分支,采用神经网络;基础模型(FM)是在海量数据上预训练的大模型;大语言模型(LLM)是FM的一种,专注自然语言处理,GPT是其代表架构;生成式AI(Generative AI)则涵盖跨模态内容生成,包括文本、图像、音频和视频。这些概念呈现清晰的树状层级关系,从广义AI逐步细化到具体应用领域。
2025-08-26 08:47:13
418
原创 【GPT5的多个子模型和动态路由分别是什么?】
GPT-5采用"多子模型+动态路由"架构,包含不同规模能力的子模型(main/mini/nano/pro),通过智能调度系统根据任务复杂度自动分配请求。这种设计相比单一巨模型更高效灵活,简单问题由轻量模型快速响应,复杂任务则调用高性能模型,在保证效果的同时优化算力成本。其运作机制类似智慧客服中心的分级响应系统,实现了AI资源的精准匹配和高效利用。
2025-08-25 17:58:23
447
原创 GPT5的Test-time compute(测试时计算)是什么?
Test-time compute(测试时计算)是指在模型推理阶段动态调整计算资源的技术,根据任务复杂度分配不同算力。简单问题调用轻量计算,复杂任务则启用更深层推理或更大子模型。常见实现方式包括专家混合模型、动态深度网络和多步推理机制。其优势在于提升计算效率和准确性,但面临实现复杂度高、响应时间不稳定等挑战。该技术让AI能像人类一样"因题制宜",在保证简单任务快速响应的同时,为复杂问题投入更多"思考"资源。
2025-08-25 17:42:28
343
原创 【GPT-5 与 GPT-4 的主要区别?】
GPT-4是 OpenAI 于 2023 年 3 月发布的多模态大型语言模型,广泛应用于 ChatGPT、Copilot 等产品,并支持多种任务。GPT-5则是 2025 年 8 月 7 日发布的最新旗舰模型,接替包括 GPT-4、GPT-4o、GPT-4.5 等多个版本,成为统一平台。特性GPT-4GPT-5发布时间2023 年2025 年 8 月 7 日架构多模型流派(GPT-4 / 4o)统一系统 + 自动路由(mini / thinking / nano)推理表达能力强力,支持多模态。
2025-08-25 17:31:25
627
原创 【从技术可行性角度,深入剖析AI搜索场景的可落地性】
本文剖析了AI搜索的技术可行性与落地性,对比了传统关键词搜索与AI语义搜索的本质差异。核心技术如大型语言模型、检索增强生成、向量数据库等已较为成熟,使基础版AI搜索系统具备可行性。然而,生产级应用仍面临成本、延迟、准确性、数据安全等挑战。当前AI搜索在企业知识库、电商搜索、对话式助手等垂直场景落地性较高,而在通用搜索领域仍需突破。文章建议聚焦特定场景,通过RAG等技术将AI能力约束在可靠范围内,逐步推进实际应用。
2025-08-25 16:31:29
937
原创 【什么是端到端模型】
端到端模型的核心思想 端到端模型是一种直接从原始输入到目标输出的智能系统,省去中间人工处理环节,就像直接点菜而不用管烹饪过程。在AI领域(如自动驾驶),它通过海量数据学习整体规律,而非分步处理。优势在于简化流程、优化效果,但需要大量数据且决策过程不透明。这种"一站式"解决方案正广泛应用于翻译、识别等AI场景。 (98字)
2025-08-25 16:18:38
374
原创 【模型的泛化能力是什么?过拟合是什么?】
文章摘要:模型的泛化能力指其在新数据上的表现能力,关键在于避免过拟合。过拟合是模型对训练数据过度拟合而在新数据表现差的现象,主要因模型复杂、数据不足或噪声造成。解决方法包括数据增强、正则化、控制模型复杂度、早停和集成学习等。泛化能力衡量模型从训练数据迁移到新数据的可靠性。
2025-08-25 15:24:40
283
原创 【什么是大模型的幻觉?为什么会产生幻觉?如何解决幻觉问题?】
大模型幻觉指模型生成看似合理但实际错误的内容,表现为语言流畅但事实不符。其成因包括训练数据缺陷、概率生成机制、解码策略和应用环境等问题。解决方案需多管齐下:提升数据质量,采用RAG检索增强,引入事实校验模块,调整解码参数,并结合人机协作审核。本质是让模型从"自由发挥"转向"有据可依",通过知识对齐和外部验证减少虚构信息。
2025-08-25 11:39:49
289
原创 【什么是知识图谱?】
知识图谱是一种以图结构(节点+边)组织和表达知识的方法,包含实体、关系和属性。其构建涉及数据收集、知识抽取、融合与存储,应用覆盖搜索、问答、推荐等多个领域。知识图谱可与RAG(检索增强生成)结合,通过语义扩展和逻辑推理提升大模型回答的准确性与可解释性。核心流程包括数据来源→知识构建→存储管理→应用交互,最终实现结构化知识的系统化利用。
2025-08-25 11:34:40
705
原创 【生成式AI是大模型吗?以及生成模型和判别模型的区别?】
生成式AI与大模型的关系常被误解。生成式AI是一种能够创造新内容的能力,而大模型是实现这一能力的工具之一。判别模型用于区分数据(如分类),而生成模型用于创造内容(如文本生成)。虽然大模型显著提升了生成式AI的表现,但小型生成模型(如GAN)同样存在。大模型也可用于判别任务,本质上是利用其生成能力解决分类问题。因此,生成式AI不等同于大模型,大模型只是推动其发展的强大工具之一。两者的关系可以概括为:生成式AI是"能力",大模型是"实现工具"。
2025-08-23 17:06:07
550
原创 【什么是大模型自注意力机制?】
本文通过一个简化示例详细解析了自注意力机制的计算过程。核心思想是让模型能够根据上下文动态关注相关信息,解决指代消解等问题。计算分为四步:1)创建查询、键和值向量;2)计算注意力分数;3)缩放并应用softmax归一化;4)加权求和得到输出。示例显示第一个词的表示通过自注意力融入了98.6%的第二个词信息,模拟了语义理解过程。关键点包括动态权重、并行计算、QKV三元组的作用以及可学习参数矩阵,这些特性使自注意力成为Transformer架构的核心组件。
2025-08-23 16:53:15
764
原创 【MOE是什么?】
本文通过医院分诊的类比,生动解释了MOE(专家混合模型)的核心机制。MOE包含多个专业化的子网络(专家)和一个门控网络(导诊台),输入数据(病人)会根据特征被分配到少数相关专家(科室)处理,实现稀疏激活。专家之间需保持差异性(科室分工明确),同时门控网络要确保专家负载均衡(合理分流病人),从而提高整体效率。这种机制既节省计算资源,又能针对不同输入提供专业化处理,最终输出更精准的结果。
2025-08-23 11:28:23
435
原创 RLHF是什么?
读书(预训练):积累通用知识与表达方式(大规模语料)。上大学/实习(监督微调):学习专业任务的标准答案(人工标注对)。工作(RLHF):根据领导/客户的反馈来调整自己的行为(奖励模型 + 策略优化)。换句话说,预训练让你“有知识”,SFT 让你“会做题”,RLHF 让你“合人意”。
2025-08-23 10:10:25
270
原创 【假设微调1B模型,一个模型参数是16bit,计算需要多少显存?】
全量微调1B模型显存需求约20GB(权重2GB+梯度2GB+优化器12GB+激活4GB),高效微调可大幅降低开销。LoRA通过冻结原参数仅训练0.1%的适配层,显存降至6GB(含4GB激活);QLoRA进一步引入4-bit量化,模型权重压缩至0.5GB,总显存仅需4.6GB。两种高效方法均能显著减少梯度和优化器状态占用,但激活值仍是主要瓶颈。实际应用中,QLoRA配合梯度检查点技术可在消费级显卡上实现大模型微调。
2025-08-23 09:49:08
798
原创 RAG和微调是什么?两者的区别?什么场景使用RAG或微调?判断依据是什么?
摘要: RAG(检索增强生成)通过外部知识库检索增强提示词,解决大模型幻觉和知识陈旧问题,适合需要实时更新、可溯源的场景,成本低且易迭代。微调则通过调整模型参数内化特定知识或风格,适合需要改变模型行为、处理复杂专业任务的场景,但成本高且更新困难。实际应用中常将两者结合:先用微调优化模型基础能力,再通过RAG提供最新知识支持。选择依据核心在于需求是获取新知识(RAG)还是改变行为(微调)。 (字数:150)
2025-08-22 17:00:13
497
原创 【大模型采样策略(Greedy、Top-k、Top-p、温度调节)三化学习】
大模型生成文本时,采样策略在确定性和多样性之间寻求平衡。常用策略包括:贪心搜索(稳定但单调)、Top-k(限定候选词数量)、Top-p(动态调整候选范围)和温度调节(控制概率分布陡峭度)。温度可作为通用参数,配合其他策略调节输出风格。这些方法共同作用,使模型输出既合理又富有变化。
2025-08-22 16:28:08
397
原创 大模型是如何生成回复的?背后的逻辑是什么?
大模型生成回复的核心逻辑是:通过Transformer架构将输入文本转换为向量表示,利用自注意力机制理解上下文关系,逐词预测概率分布,并采用采样策略生成连贯输出。整个过程结合海量数据训练和人类反馈优化,使其成为能捕捉语言规律的概率预测器。关键步骤包括:文本编码、语境建模、概率预测、采样解码和人类对齐。
2025-08-22 16:21:09
440
原创 【Benchmark是什么?】
Benchmark(基准测试)是一种标准化的测试方法,用于定量评估和比较不同系统(如硬件、软件、算法等)的性能表现。核心作用包括性能比较、评估、优化调试、营销宣传和追踪技术进步。常见类型有硬件测试(如Geekbench)、软件测试(如TPC数据库基准)和AI评估(如MLPerf)。但需注意其局限性,如厂商针对性优化、测试场景单一等。Benchmark作为技术领域的客观标尺,为性能评估和决策提供了重要依据。
2025-08-21 17:49:44
763
原创 【多模态大模型深度融合中的标准交叉注意力小结】
摘要:标准交叉注意力是多模态大模型深度融合的核心机制,通过"你问我答"的方式实现跨模态信息交互。它基于Transformer架构,让一个模态(如文本)通过Query查询另一模态(如图像)的Key/Value信息,建立精准对齐关系。该机制支持多层次深度交互,比简单拼接更智能,能有效减少噪声干扰,广泛应用于视觉问答、文生图等任务。其工作原理类似课堂问答:学生(文本)提出问题,教科书(图像)提供线索,最终实现跨模态的精准信息融合。
2025-08-20 11:55:43
364
原创 【大模型早期融合的标记化架构】
👉 系统化总结:早期融合的标记化架构是在多模态大模型的早期融合策略里,用 token 统一表示不同模态,从而让一个模型在共享空间中直接学习模态间关系。早期融合的标记化架构不是孤立存在的,它处于多模态 AI 发展的大背景中。👉 全局化总结:早期融合 + 标记化架构的核心就是。这条链路就是早期融合标记化架构的工作逻辑。
2025-08-20 11:34:49
413
原创 【大模型早期融合的非标记化架构】
“早期融合的非标记化架构”,其实是指:在多模态融合里,输入阶段直接把不同模态的原始特征(未经强标签化、未被统一成同一格式的表示)拼接或并行输入模型,让模型自己去学会理解和对齐。我用“三化”来帮你通俗讲清楚👇为什么会有“早期融合的非标记化架构”?👉 系统化理解:这是在算力和模型能力允许时,让模型自己去发现跨模态关系,而不是人为设计标签或统一编码。输入层非标记化拼接与输入模型学习输出层👉 全局化理解:这就是“早期融合”+“非标记化”,即:不用人为提前规范格式,交给大模型在输入阶段直接混合学习。可以类比成小
2025-08-19 21:31:54
453
原创 【多模态融合方式】
多模态融合方法对比 多模态融合根据信息交互时机分为四种主流方式:早期融合(直接拼接各模态原始特征,信息全但杂乱)、中期融合(模态先独立处理再用注意力机制交互)、后期融合(各模态独立预测后投票)和深度融合(网络各层持续交互,效果最优但成本高)。这些方法本质是信息交流深度的递进——从一次性混合到逐层反复融合,需根据任务复杂度、资源条件权衡选择。简单任务可用后期融合,复杂任务推荐深度融合,但需强大算力支撑。
2025-08-19 21:26:42
230
原创 【多模态大模型的三化】
多模态大模型(MLLM)可以通过“三化”框架通俗理解: 系统化:结合算力、数据、应用等外部环境,将多模态视为连接不同感官的统一大脑; 全局化:拆解为输入、表示、对齐、融合、输出等模块,强调跨模态语义对齐与信息融合; 结构化:类比“翻译共同语言→集体推理”流程,核心是解决模态间的协同问题。 关键点:多模态需先统一语义表达,再实现生成与推理。常见应用包括文生图、视频理解等,技术难点在于对齐质量与数据偏差。速记口诀:“五连(输入到输出)五环(算力到安全)”。
2025-08-19 21:14:26
817
原创 【大模型量化推理框架】
本文用做菜比喻解析6种模型量化方案:1)PTQ直接量化(快但精度低);2)动态量化(边处理边量化,适合变长输入);3)SmoothQuant(平衡激活值与权重量化,LLM首选);4)GPTQ(智能分层压缩,体积最小);5)AWQ(保护关键参数,适合移动端)。通过对比表格指出:PTQ适合快速部署,SmoothQuant保持高精度,GPTQ/AWQ专攻轻量化。如同选择厨具,需根据场景(速度/精度/体积)匹配方案。(149字)
2025-08-19 11:51:54
626
原创 【介绍量化效果优化有哪些?SmoothQuant的优化过程和原理?】
SmoothQuant是一种针对大语言模型(如LLaMA、GPT)的量化优化方法。核心思路是通过数学变换平衡权重和激活值的量化难度:对激活值除以缩放因子(s)缩小范围,同时对权重乘以s保持计算结果不变。该方法在无需训练的情况下,通过校准阶段计算最优s值,使得激活值和权重都更易量化,从而显著降低激活值量化误差。相比传统量化,SmoothQuant在LLM上实现几乎无损精度的INT8量化,推理速度可提升3倍,特别适合解决大模型中激活值动态范围大导致的量化难题。
2025-08-19 11:45:11
611
原创 【大模型量化方法QAT、PTQ、GPTQ】
本文介绍了三种模型量化方法: 训练时量化(QAT):在训练阶段模拟量化环境,适合高精度场景,但耗时较长,如手机人脸解锁。 训练后量化(PTQ):训练完成后压缩模型,速度快但精度略降,适用于短视频滤镜等实时应用。 GPTQ量化:针对大模型的智能压缩技术,能高效压缩至4比特且保持精度,适合在移动端运行大语言模型。 三种方法各具优势:QAT精度高,PTQ速度快,GPTQ适合大模型压缩。选择时需根据需求平衡速度与精度。
2025-08-19 11:37:41
471
原创 【大模型参数显存小结】
大模型训练中的显存占用主要来自三部分:模型参数显存、激活显存和优化器显存。模型参数显存存储权重和梯度,用于前向/反向传播;激活显存保存中间计算结果,是梯度计算的基础;优化器显存存储动量等状态信息,用于参数更新。三者缺一不可,共同支撑模型训练过程。显存优化技术如参数分片、混合精度训练等可减少占用。前向传播计算预测值,反向传播通过链式法则计算梯度,优化器利用动量和方差调整参数更新方向与幅度。
2025-08-19 11:10:48
614
原创 【大模型量化、蒸馏、剪枝、微调小结】
大模型优化技术主要包括量化、蒸馏、剪枝和微调。量化通过降低参数精度(如32位→8位)提升效率;蒸馏将大模型知识迁移到小模型;剪枝移除冗余参数实现轻量化;微调技术(如Adapter、LoRA)则高效适配下游任务。这些技术的本质分别是精度-效率权衡、知识迁移、模型稀疏化和任务适配,共同解决大模型资源消耗高、部署难的问题。
2025-08-19 09:34:07
528
原创 【模型评估中的BLEU、ROUGE、Bertscore、BERT分别什么意思?】
本文对比分析了四种NLP评估指标:BLEU、ROUGE、BERTScore和BERT。BLEU基于n-gram匹配,适用于机器翻译但忽略语义;ROUGE侧重内容覆盖,适合摘要评估;BERTScore利用BERT模型衡量语义相似度,精度高但计算复杂;BERT本身是预训练模型,为下游任务提供基础架构。选型建议指出应根据任务特点组合使用不同指标,如翻译用BLEU+BERTScore,摘要用ROUGE-L,对话系统用BERTScore等。文末强调需结合具体场景选择评估方法。
2025-08-15 21:17:11
1049
原创 【大模型评估体系简介】
摘要: 大模型评估体系涵盖自动化、人工和大模型评估三类方法,适用于不同任务场景。评估实施分为场景拆解、工具选型、指标设计等五步,需结合领域特性(如医疗、金融)定制指标。前沿方法包括优化Prompt设计和链式评估,混合策略可平衡效率与可靠性。常见问题如指标矛盾可通过调整权重或三级过滤法解决。评估报告需包含核心结果与改进建议,形成评估-优化闭环。关键要诀是明确目标、混合策略和持续优化。
2025-08-15 21:01:06
812
原创 【使用三化总结大模型基础概念】
摘要: 大模型的研发与应用涉及系统性、全局性和结构化的多维度分析。从系统生态看,需关注算力基础设施、数据来源、法规伦理及商业竞争等外部因素。模型内部结构涵盖Transformer架构、训练流程、参数规模、能力维度及部署方式。各要素间存在动态关联:算力影响训练规模,数据质量决定模型性能,架构优化提升推理效率,训练策略适配部署需求,法规约束应用落地。研究大模型需综合考虑技术实现、资源条件和社会环境的多重交互影响。(149字)
2025-08-15 17:57:40
372
原创 【大模型微调的目的是什么?流程是什么?为什么要微调模型?】
摘要: 本指南系统阐述了大模型指令微调的全流程与关键技术。核心包括:1)赋予模型复杂指令理解与多轮对话能力;2)数据收集与质量检验方法,强调领域数据占比与统计验证;3)模型选择标准与硬件配置建议;4)微调技术细节(LoRA参数公式、Adapter结构);5)多维评估体系(人工评分、推理速度);6)常见问题解决方案(效果下降时调整数据比例或采用DoRA)及前沿技术(QLoRA量化部署)。通过模块化结构提供从理论到实践的完整指导,涵盖医疗、法律等专业场景应用案例。
2025-08-15 17:52:49
630
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人