InternalError: Blas GEMM launch failed 原因

本文探讨了在Ubuntu16.04环境下,使用CUDA9.0、cuDNN7.05及TensorFlow-GPU1.5进行深度学习开发时,如何有效管理GPU资源,避免因资源冲突导致的程序执行失败。文章提供了限制TensorFlow GPU显存占用的方法,并分享了安装CUDA补丁的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ubuntu 16.04 + cuda 9.0 + cudnn 7.05 +tensorflow-gpu==1.5

发生原因:
(1)、由于其他pythonx程序占用了GPU资源,导致现有程序没法分配足够的资源去执行当前程序。
(2)、tensorflow-gpu默认占用所有显存,注意在初始化 Session 的时候为其分配固定数量的显存,否则可能会在开始训练的时候直接报错退出。

解决办法:
(1)if 'session' in locals() and session is not None: print('Close interactive session') session.close()
(2)gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
per_process_gpu_memory_fraction=0.5设置占用GPU比例。

如果还未能解决:

下载cuda9.0补丁
下载地址:https://developer.nvidia.com/cuda-90-download-archive
根据自己的系统选择,我这里选择linux - x86_64 - ubuntu -16.04 - runfile(local)
需下载的四个补丁:
cuda_9.0.176.1_linux.run,cuda_9.0.176.2_linux.run,
cuda_9.0.176.3_linux.run,cuda_9.0.176.4_linux.run

sudo chmod a+x cuda_9.0.176.1_linux.run cuda_9.0.176.2_linux.run cuda_9.0.176.3_linux.run cuda_9.0.176.4_linux.run
sudo ./cuda_9.0.176.1_linux.run
sudo ./cuda_9.0.176.2_linux.run
sudo ./cuda_9.0.176.3_linux.run
sudo ./cuda_9.0.176.4_linux.run
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值