低成本单机多卡微调方案实战指南:Windows系统+双4070显卡+LLaMA-Factory微调7B大模型

  • 【真实项目复盘】从显卡困局到双4070显卡极限突围

  • 【显卡党必看】双4070显卡血泪教程:从炸显存到跑通7B模型的生死线

  • Windows 11双显卡部署LLaMA-Factory:4070显卡显存溢出终极解决方案

  • WSL2下微调避坑指南:双4070显卡跑通Qwen2.5-7B-Instruct的4bit量化实录

  • LLaMA-Factory实战:12G显存显卡用量化压缩玩转3B/7B大模型

“本以为双4070就能硬刚7B模型,结果Windows下双卡并行都炸了…过程中各种报错,各种查原因,问了Deepseek,又问gpt,再问豆包,再问搜索引擎,所有有名大模型都问了,都搜了,解决方案屈指可数啊,花三天踩穿各种环境陷阱、显存陷阱,最终靠WSL2+量化压缩实现反杀!操作过程从头整理如下:”

有图有真相,双4070并行微调,双12G显存全部100%占满
在这里插入图片描述

设备数量2,训练完毕,完全在webui操作执行
在这里插入图片描述

一、从头说起:当企业级需求撞上消费级显卡

大模型有大模型的用处,小模型有小模型的用处,项目需要,考虑小参数模型解决基本问题即可:

现状

  • 预算限制无法采购A100/H100等专业卡
  • 现有工作站配备双4070(12G×2)消费级显卡
  • 需求:微调3B-7B量级大模型用于项目基本应用场景

Windows

  • 版本 Windows 11 专业版
  • 处理器 Intel® Core™ Ultra 7 265K 3.90 GHz
  • 机带 RAM 128 GB (127 GB 可用)
  • 系统类型 64 位操作系统, 基于 x64 的处理器

显卡(nvidia-smi)
在这里插入图片描述


二、Windows多卡并行血泪史:从希望到绝望

初次尝试:直接执行LLaMA-Factory

按照LLaMA-Factory指南直接安装,自动识别设备数为2      
下载速度慢,就执行这个源,pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -e ".[torch,metrics]"


# 之后就开始做微调,但是报错,报错现场还原,如下:
[2025-05-01 20:35:10,200] [INFO] [real_accelerator.py:239:get_accelerator] Setting ds_accelerator to cuda (auto detect)
W0501 20:35:10.995000 28028 site-packages\torch\distributed\elastic\multiprocessing\redirects.py:29] NOTE: Redirects are currently not supported in Windows or MacOs.
[INFO|2025-05-01 20:35:13] llamafactory.cli:143 >> Initializing 2 distributed tasks at: 127.0.0.1:59858
W0501 20:35:15.140000 20420 site-packages\torch\di
### LLaMA-Factory GPU分布式训练配置 对于希望在GPU环境下使用LLaMA-Factory进行高效的大规模模型微调和训练的任务而言,正确设置环境至关重要。为了实现这一点,在Windows操作系统上除了要确保安装了与CUDA版本兼容的PyTorch外,还需要特别注意一些额外的关键组件和参数配置[^1]。 #### 安装必要的依赖项和支持库 首先应当确认已经成功安装了适合所使用的NVIDIA GPU型号以及驱动程序版本对应的CUDA Toolkit,并且通过`nvcc --version`命令验证其可用性。接着按照官方文档指导完成cuDNN SDK的部署工作,这对于优化神经网络运算性能非常重要。 #### 配置PyTorch以支持GPU操作 当准备就绪之后,下一步就是调整PyTorch的相关选项来启用对个图形处理器的支持: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117/ ``` 上述命令假设读者正在寻找适用于CUDA 11.7版的预编译二进制文件;如果采用其他版本,则需相应修改URL中的部分字段。 #### 编写支持分布式训练的应用代码 为了让应用程序能够在集群环境中有效地分配任务给不同的节点或在同一台机器上的不同设备间共享负载,通常会借助于Python标准库multiprocessing或是更高级别的工具如Horovod来进行开发。然而最简单的方式莫过于直接利用内置于PyTorch之内的`torch.nn.DataParallel()`方法或者是更加灵活强大的`torch.distributed.launch`模块配合DDP(Data Distributed Parallel)模式编写脚本。 下面给出一段基于后者的小例子作为参考: ```python import os import torch from transformers import AutoModelForCausalLM, Trainer, TrainingArguments os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' def main(): model_name_or_path = "facebook/llama-7b" training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, logging_steps=10, save_strategy="epoch", fp16=True, # 如果硬件支持的话开启混合精度加快速度减少显存占用 dataloader_num_workers=4, local_rank=int(os.getenv('LOCAL_RANK', -1)), ) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) trainer = Trainer( model=model, args=training_args, train_dataset=None, # 这里应该替换为实际的数据集对象 eval_dataset=None, # 同样地也应提供评估用的数据源 ) trainer.train() if __name__ == '__main__': torch.multiprocessing.set_start_method('spawn') torch.cuda.empty_cache() main() ``` 这段代码片段展示了如何初始化一个简单的Transformers库中的Trainer实例用于执行因果语言建模(Causal Language Modeling),并通过指定合适的TrainingArguments参数让其实现跨张GPU之间的协作学习过程。值得注意的是这里启用了fp16半精度浮点数计算方式以便进一步提升效率降低资源消耗。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yaoyuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值