
AI模型安全
文章平均质量分 85
大语言模型安全,深度学习模型安全
ybdesire
Talk is cheap. Show me the code.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
用于测试大模型修复代码漏洞能力的数据集AutoPatchBench
AutoPatchBench里面包含了 136 个在实际代码库中(通过模糊测试发现的 C/C++ 漏洞),以及来自 ARVO 数据集的经过验证的修复方案。原创 2025-05-03 23:15:00 · 452 阅读 · 0 评论 -
Jinja2模板引擎SSTI漏洞
Jinja2 模板引擎在处理模板时执行了攻击者注入的恶意代码,从而引发了严重的安全问题,如敏感信息泄露、服务器被恶意控制原创 2025-04-19 23:15:00 · 1136 阅读 · 0 评论 -
PurpleLlama大模型安全全套检测方案
PurpleLlama包含多个关键工具和评估基准,用于提升LLM的安全性:(1)CyberSec Eval:网络安全评估工具,用于量化LLM在网络安全方面的风险,包括生成恶意代码的可能性、不安全代码建议频率以及协助网络攻击的能力。(2)Llama Guard:输入输出保护工具,用于过滤和检查LLM的输入输出内容,防止生成危险输出或被黑客利用。(3)Prompt Guard:提示保护工具,用于检测和阻止恶意提示注入,确保基于LLM的应用程序的安全性。原创 2025-03-21 22:15:00 · 2235 阅读 · 0 评论 -
用promptfoo做大模型安全性测评
本文讲解了运行promptfoo做大模型安全性测评的过程以及结果分析原创 2025-02-18 22:45:00 · 1960 阅读 · 0 评论 -
解读“大语言模型(LLM)安全性测评基准”
本文汇总了,大语言模型在用户输入prompt的操作后,大语言模型输出相应结果,这个过程中遇到的两大类安全问题,8种“prompt安全”问题与6种“内容安全”问题。原创 2025-02-04 23:45:00 · 939 阅读 · 0 评论