【前缀和计算】PAT A1046 Shortest Distance

本文介绍了一种高效算法,用于解决特定条件下的环形路径最短距离问题,避免了传统暴力求解法的高时间复杂度。通过计算相对距离并选择合适的参考系,将问题转化为寻找两点间最小距离,有效降低时间复杂度至可接受范围内。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实现

码前思考

  1. 首先注意到运行时间的限制为200ms,对于一般的OJ系统,1s(即1000ms)中能计算10710^7107~10810^8108次。所以我们不能使用暴力的求解,因为暴力解法的时间复杂度为MNMNMN,大约有10910^9109方了,所以得想其他方法。
  2. 既然暴力不行,那么只能另辟蹊径,转换思维,首先MMM是不可能变的,那么只有把NNN变成1,做法就是选取参考系,计算相对距离。

代码实现

//首先,一定不能暴力求解,不然会超时
//时间限制为200ms,1s允许的操作为10^7~10^8操作
#include "bits/stdc++.h"
using namespace std;
//最大数组长度 
const int maxn = 1e5+10;

//表示整个环的长度 
int total; 

//表示顺时针方向,起点1到这个结点的距离
int dis[maxn]; 

//顶点数
int n;

//对数
int m; 
 
int main(){
	scanf("%d",&n);
	
	//题目保证不会超限int的 
	total = 0;
	
	for(int i=0;i<n;i++){
		int d;
		scanf("%d",&d);
		total = total + d;
		//同时赋值
		dis[(i+2)%(n+1)] = total; 
	}
	
	//设置1为0 
	dis[1] = 0; 
	
	scanf("%d",&m);
	//下面开始读入数据
	for(int i=0;i<m;i++){
		int a;
		int b;
		scanf("%d %d",&a,&b);
		//得到那个顶点是大的顶点
		if(a < b){
			swap(a,b);
		}
		//a表示序号大的点,b表示序号小的点
		int d1 = dis[a] - dis[b];
		int d2 = total - d1;
		
		//取两者的最小值 
		printf("%d\n",min(d1,d2)); 
	}
		
	return 0;
}

码后反思

  1. 要认真分析时间复杂度!

二刷代码

#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1e5+10;

int sum=0;
int dis[maxn];
int n;
int m;

int main(){
	//freopen("input.txt","r",stdin);
	scanf("%d",&n);
	dis[1]=0;
	int d;
	for(int i=2;i<=n;i++){
		scanf("%d",&d);
		sum+=d;
		dis[i]=sum;
	}
	scanf("%d",&d);
	sum+=d;
	
	scanf("%d",&m);
	for(int i=0;i<m;i++){
		//cout<<"i: "<<i<<endl;
		int u,v;
		scanf("%d %d",&u,&v);
		int d1 = abs(dis[u]-dis[v]);
		int d2 = sum-d1;
		printf("%d\n",d1>d2?d2:d1);	
	}
	//cout<<"e";
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值