人工智能咨询培训老师叶梓 转载标明出处
多源数据异构性问题通常来源于多轮交互的Agent相关数据。不同数据集之间的数据结构、语法、标签约定和处理方法的多样性,使得LLM的训练和微调过程变得复杂,且容易引入偏差和不一致性。为了应对这些挑战,Salesforce 公司的研究团队提出了一个名为AgentOhana的综合解决方案,他们开发了强大的预处理流水线,确保跨不同数据格式的统一性和兼容性,并实施策略以减少非标准化表示可能引起的偏差。
想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。
1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。
CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987
方法
图 1展示了AgentOhana的工作流程。此图<bold>bold</bold>
突出了如何使用统一的多轮数据格式来整合来自不同数据源的轨迹。这种格式允许将不同环境(如HotpotQA和ToolAlpaca)中的Agent轨迹整合到一个统一的框架中。
图 1 显示了数据从各个环境(Environment 1, Environment 2, ..., Envir