人工智能咨询培训老师叶梓 转载标明出处
现有的开源LLMs在构建智能体方面的效果远不如GPT-4。标准的构建开源LLM智能体的方法涉及模仿学习,即基于专家轨迹对LLMs进行微调。然而,这些方法完全依赖于专家演示,由于对目标环境探索不足而可能产生次优策略,限制了它们的泛化能力。为了解决这一问题,来自北京大学、加州大学洛杉矶分校、俄亥俄州立大学和伊利诺伊大学香槟分校的研究者们提出了一种名为探索式轨迹优化(Exploration-based Trajectory Optimization, ETO)的新型学习方法。该方法允许智能体从探索失败中学习,通过迭代优化框架提高性能。
方法
ETO通过行为克隆开始训练基础智能体,然后通过迭代的方式不断从试错中增强策略。图1展示了探索式轨迹优化(ETO)的过程。在这一流程中,Agent首先通过行为克隆学习基础任务执行策略,然后在实际环境中探索并收集失败的轨迹。这些失败轨迹与先前收集的专家成功轨迹形成对比,Agent利用这些对比信息通过直接偏好优化(DPO)等技术更新其策略。这个过程循环进行,以提高Agent在完成任务时的性能和适应性。
首先,研究者们使用行为克隆(BC)来训练一个基础智能体。行为克隆是通过在专家互动轨迹数据上进行监督式微调,从而为构建强大的智能体打下坚实的基础。在这项工作中,研究者们采用了ReAct风格的轨迹来进行BC,这种方法在每次行动之前还会生成“思考链”(Chain-of-Thought, CoT)理由。
为了简化表示,研究者们用带有CoT的行动来表示。给定一个专家轨迹数据集D,其中包含多个轨迹,通过在自回归损失上微调大模型(LLM)来获得基础智能体πbase。这个过程中,智能体的参数θ被优化以最大化专家轨迹的概率。
然而,仅依赖专家轨迹的行为克隆无法使智能体探索环境,可能导致次优策略。为了训练更强大的智能体,让模型探索失败轨迹非常重要。研