计算机视觉(二)

本文详细介绍了反向传播的原理与应用,通过计算图解释了如何利用链式法则高效计算梯度,并阐述了梯度与权值矩阵的关系。同时,文章还对比了卷积层与全连接层的特点,强调了卷积层在处理图像数据时的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

反向传播

1、实质就是一个利用链式法则求梯度的过程,在实际中,参数的计算会及其复杂,此时如果利用公式来计算梯度非常麻烦,所以可以利用反向传播,所谓的反向传播,其实可以利用计算图来解释,当进行前向传播时,我们将每一步的结果进行存储,进行反向传播时,我们只需要利用链式法则计算每一步的梯度即可,这样可以利用原来存储的前向传播的值,一直将所有的梯度计算出来。
这里写图片描述
2、梯度与权值矩阵的大小相同,这是因为梯度本身就是权值对结果的贡献的量化。

卷积

1、卷积层与全连接层的不同在于它能够保存图片的结构,而不是展成一个向量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值