题目:
给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。
回文串 是正着读和反着读都一样的字符串。
示例 1:
输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]
示例 2:
输入:s = "a"
输出:[["a"]]
提示:
1 <= s.length <= 16
s 仅由小写英文字母组成
Related Topics
字符串
动态规划
回溯
题解
首先看到“最大’、”最小“、”最少“、”所有结果“等题目,可以首先考虑用动态规划去解决。这个题目可以看到需要返回s中所有可能得分割方案,我们首先想到可以用动态规划去解决。然后我们继续看题,他说要讲s分割成一些子串,使每个子串都是回文串,这个时候我们可以简单用动态规划的思路去思考下。s = “aab”, 设置初始start = 0; end = i ++;找到子回文串之后start=end; s.substring(start, end)当确认第一个子串是回文串的时候,我们的第一个子串可能是"a"/“aa”,然后根据第一个已经确定的子串,推理需要确定第二个子字符串是否为回文串,第二个子字符串可能是"a"/“b”,确定完第二个字符串的时候可能start 任然小于s.length,也就是s还没被分割完。这个时候就需要就需要回溯进行处理,保证start 或 end 每次变动截取到的子回文串,可以找到所有子回文串的可能。
由此推到动态转移方程为:
字符串总长度为len, 子串start 起始位置,子串end结束位置
dp[start, len] = dp[start, end] + dp[len - end, len]
start 为固定值的时候end是不固定的可能会有多种情况,比如aab,start = 0, end可能为1和2,所以这个时候就需要用到回溯来处理。
代码
/**
* 判断字符串是否为回文字符串
*
* @param s 回文串
* @return
*/
public static boolean isPalindrome(String s) {
String s1 = s.toLowerCase()