R语言中的回归模型:线性、非线性与生存分析
在数据分析和机器学习领域,回归模型是一种强大的工具,用于建立自变量与因变量之间的关系。R语言提供了丰富的函数和包来实现各种回归模型,本文将详细介绍这些模型及其在R语言中的实现方法。
1. 套索回归(Lasso Regression)
套索回归是一种用于变量选择和收缩的方法,它可以在模型中自动选择重要的变量,并对系数进行收缩。在R语言中,可以使用 lars
函数来计算套索回归。
library(lars)
lars(x, y, type = c("lasso", "lar", "forward.stagewise", "stepwise"),
trace = FALSE, normalize = TRUE, intercept = TRUE, Gram,
eps = .Machine$double.eps, max.steps, use.Gram = TRUE)
lars
函数的参数说明如下:
| 参数 | 描述 | 默认值 |
| ---- | ---- | ---- |
| x | 预测变量的矩阵 | 无 |
| y | 包含响应变量的数值向量 | 无 |
| type | 要拟合的模型类型,可选值为”lasso”、”lar”、”forward.stagewise”和”stepwise” | c(“lasso”, “lar”, “forward.stagewise”, “stepwise”) |
| trace