35、R语言中的回归模型:线性、非线性与生存分析

R语言中的回归模型:线性、非线性与生存分析

在数据分析和机器学习领域,回归模型是一种强大的工具,用于建立自变量与因变量之间的关系。R语言提供了丰富的函数和包来实现各种回归模型,本文将详细介绍这些模型及其在R语言中的实现方法。

1. 套索回归(Lasso Regression)

套索回归是一种用于变量选择和收缩的方法,它可以在模型中自动选择重要的变量,并对系数进行收缩。在R语言中,可以使用 lars 函数来计算套索回归。

library(lars)
lars(x, y, type = c("lasso", "lar", "forward.stagewise", "stepwise"),
    trace = FALSE, normalize = TRUE, intercept = TRUE, Gram,
    eps = .Machine$double.eps, max.steps, use.Gram = TRUE)

lars 函数的参数说明如下:
| 参数 | 描述 | 默认值 |
| ---- | ---- | ---- |
| x | 预测变量的矩阵 | 无 |
| y | 包含响应变量的数值向量 | 无 |
| type | 要拟合的模型类型,可选值为”lasso”、”lar”、”forward.stagewise”和”stepwise” | c(“lasso”, “lar”, “forward.stagewise”, “stepwise”) |
| trace

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值