python中scipy包中的linkage进行层次聚类

本文深入探讨了层次聚类算法的基本原理与实现方法,通过使用Scipy库中的linkage和dendrogram函数,演示了如何进行数据聚类并可视化聚类结果。文章解释了三种不同的类间距离计算方法:最近邻(single)、平均距离(average)和最远邻(complete),并通过一个具体示例展示了如何应用这些方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from scipy.cluster.hierarchy import dendrogram, linkage,fcluster
from matplotlib import pyplot as plt
X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]
#method是指计算类间距离的方法,比较常用的有3种: 
#single:最近邻,把类与类间距离最近的作为类间距 
#average:平均距离,类与类间所有pairs距离的平均
#complete:最远邻,把类与类间距离最远的作为类间距 
Z = linkage(X, 'single')
f = fcluster(Z,4,'distance')
fig = plt.figure(figsize=(5, 3))
dn = dendrogram(Z)
plt.show()

最近很懒,在看之前就应该看完的《集体智慧编程》提到了层次聚类,所以就重温下

解读:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值