自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1045)
  • 收藏
  • 关注

原创 LangGraph多智能体架构实战教程:构建复杂协作AI系统

本文详解LangGraph多智能体架构,包括系统概念、架构类型(网络、监督者、分层等)、通信机制(Handoffs)及消息管理模式。通过旅行订票等案例,展示如何构建自定义多智能体、监督者和群体架构,提供完整代码实现。强调选择合适大模型和正确配置工具调用的重要性,为开发者构建复杂协作AI系统提供实战指南。

2025-09-09 19:14:12 502

原创 一文掌握MCP、LangChain和LangGraph:构建大模型应用的完整指南,建议收藏

本文详细解析了MCP、LangChain和LangGraph三大核心技术,展示了它们如何协同工作构建AI应用。介绍了MCP协议连接AI模型与数据源的方式,LangChain的组件化开发工具,以及LangGraph的工作流编排功能。提供了两种MCP集成方式和完整项目结构示例,为开发者构建大模型应用提供了全面技术指南。

2025-09-09 19:10:02 721

原创 大模型应用开发面试指南:LangChain与LlamaIndex核心知识点详解

本文是一份全面的大模型应用开发面试资料,重点介绍了LangChain和LlamaIndex两大框架的核心概念与应用。详细解释了LangChain的六大核心组件、LCEL优势、Agent执行流程及RAG实现方法,同时对比了LlamaIndex作为数据层专家的特点。文档还涵盖了文档切分策略、RAG效果评估及ReAct框架实现等实用技术,为开发者提供构建大模型应用的完整知识体系和面试准备指南。

2025-09-09 19:05:00 666

原创 大模型微调实战:从新手到专家,一篇教程就够了,建议收藏!

本文详细介绍了大模型微调技术,通过10步实操指南教你如何将通用AI模型转变为特定任务的定制化工具。从数据收集到模型部署,作者以HTML信息提取为例,展示如何使用Unsloth和Google Colab快速实现微调,解决AI输出不一致问题。微调让AI真正为你所用,远超prompt engineering的效果,是每位AI开发者必备技能。

2025-09-09 19:01:08 425

原创 (程序员必看)文档分块、索引增强到混合检索的全面解析

文章详细解析了RAG技术的五大关键环节:文档分块、索引增强、编码、混合检索和重排序,强调RAG不应被视为黑盒,而需要针对具体场景对各模块进行调优。作者指出,RAG的核心是在召回率与精确率之间找到平衡,并倡导从快速使用走向深度优化的实践路径,通过理解各环节技术细节,实现更精准的知识检索与生成。

2025-09-08 21:02:37 685

原创 打造生产级RAG系统:全面解析大模型检索增强生成的每个组件--路由、索引、检索

本文详细介绍了如何构建生产就绪的RAG(检索增强生成)系统,从基础组件(索引、检索、生成)到高级技术(查询转换、智能路由、多表示索引、自校正代理流等),全面涵盖RAG生态系统的每个环节。文章提供了丰富的代码示例和评估方法,帮助读者从零开始构建并优化高效、准确的RAG应用。

2025-09-08 20:54:52 447

原创 构建可靠AI智能体的秘密:Parlant框架实战指南,告别95%失败率

文章揭示了95%的智能体项目失败的原因在于过度追求准确性而非问题解决率。介绍了Parlant开源框架,通过条件-动作配对机制、双重防护和状态机架构,实现智能体的可控性和可靠性。框架提供按需激活规则系统、工具调用控制、状态机跳转等特性,特别适合金融、医疗等高风险场景。强调在生产环境中,可靠性比聪明更重要,并提供了渐进式开发等最佳实践。

2025-09-08 20:51:12 577

原创 大模型RAG实战:从文档处理到召回质量优化的全方位指南

RAG技术在大模型应用中至关重要,但面临文档处理和数据召回两大难点。文档处理需应对复杂格式问题,数据召回可能面临无法获取有效信息或召回大量无关数据的困境。通过完善提问策略、文档提炼总结等多维度方法可提升召回质量,同时增强生成阶段需对召回数据进行清洗和格式化。随着智能体技术发展,RAG系统正获得动态获取外部数据的能力。

2025-09-08 20:50:10 886

原创 【收藏必备】基于Dify 1.5.1的企业级知识库搭建全流程详解

本文详细介绍了基于Dify 1.5.1搭建知识库的全流程,包括平台基本概念、本地部署方法以及知识库的具体搭建步骤。文章重点讲解了Dify的两种知识库分段模式(通用模式和父子模式)及其区别,以及索引方法与检索设置的多种选项。通过Dify的低代码界面,开发者可以快速构建企业级AI应用,实现私有数据的智能管理与精准应用,特别适合注重数据安全的企业使用。

2025-09-04 19:30:09 712

原创 AI Agent:从学术概念到产业应用的变革力量

AI Agent凭借"自主感知-决策-执行"的闭环能力,正从学术概念转向产业应用。它以大语言模型为"大脑",结合工具链、感知系统和数据库,实现从"被动响应"到"自动执行"的转变。AI Agent不仅提升效率,更重构用户体验,未来将向多智能体协同发展,覆盖个人生活、企业办公和产业服务三大领域,成为驱动生产生活变革的关键力量。

2025-09-04 19:28:14 588

原创 AI Agent原理详解:从文本补全到自主思考的技术演进

这篇文章系统介绍了AI Agent的发展历程与技术原理。从LLM的文本补全基础开始,阐述了Function Call和MCP协议如何赋予AI工具使用能力,以及记忆管理和ReAct框架如何实现智能体的思考决策过程。文章探讨了Workflow、多Agent系统和推理模型等形态,展望了"模型即产品"的发展新阶段。AI Agent正从简单文本生成进化为能自主规划、使用工具并协作完成复杂任务的智能体,尽管仍面临幻觉、可靠性等挑战,但其技术演进正深刻改变人机交互方式。

2025-09-04 19:24:25 1047

原创 收藏必备:大语言模型模型编辑技术,让你的AI不再说错话

大语言模型常存在偏见、毒性和知识错误等问题。传统修正方法如重新预训练和微调存在成本高、效率低或影响其他能力等局限。模型编辑技术通过局部修改模型参数,可精准修正错误、补充新知识,同时保持原有性能。该方法分为外部拓展法和内部修改法,需满足准确性、泛化性、可迁移性、局部性和高效性等关键性质,为大语言模型的快速精准修正提供了新思路。

2025-09-04 19:22:40 881

原创 程序员必学!一文掌握智能体(AI Agent)在工业场景的应用与实战

文章介绍了2025年"智能体元年",智能体技术如何在工业领域快速应用。智能体以大模型为核心,包含规划、记忆、工具使用等组件,能自主实现工业场景深度适配。文章详细阐述了智能体在数据治理和智慧运维领域的具体应用案例,展示了其如何打破行业困局、提升效率。尽管存在数据孤岛等问题,但智能体已成为连接工业数字孪生与实际生产的核心纽带,未来将在制造企业智能化转型中发挥关键作用。

2025-09-04 19:20:51 726

原创 【建议收藏】RAG与微调的协同效应及其在大模型中的应用

RAG与微调作为大模型的两种核心技术,各自具有独特优势与局限。微调使模型内化特定知识但知识静态,RAG提供动态知识但检索能力有限。两者结合能产生1+1>2的协同效应:微调优化RAG的框架,RAG为微调提供实时更新的知识。深度融合正成为新趋势,通过数据与模型层面的结合,可提升知识准确性、领域适应性,减少数据需求,适用于专业问答、智能写作等场景。这种互补融合是释放大模型潜力的关键路径。

2025-09-04 19:19:14 965

原创 从零构建生产级RAG系统:基于Agent的多策略检索增强生成实战指南

本文详细介绍如何构建基于Agent的生产级RAG系统,通过工业设备维修手册案例,从数据预处理(多策略分块、清洗、摘要生成)到系统构建(规划、执行、反思、工具调用),再到评估验证,展示了完整开发流程。系统采用LangGraph实现智能体功能,通过多层次知识库和思维链推理技术,实现了高质量的知识问答和故障诊断能力,是学习大模型应用的实用指南。

2025-09-03 17:48:21 1376

原创 【干货收藏】大模型工具学习全解析:程序员必知的AI从问答到操控世界的进化

本文系统分析了大模型工具/函数调度领域的发展,基于15篇重要论文,将其分为五个研究方向:工具学习理论、API集成、评估方法、效率优化与安全性研究。从Toolformer的开创性工作到最新的并行化和安全性研究,展示了大模型从被动问答到主动操控世界的AI革命进程,并展望了多模态集成、泛化能力提升等未来方向。

2025-09-03 17:45:24 775

原创 LangGraph全解析:新一代智能体开发框架,值得收藏的实战指南

本文介绍新一代智能体开发框架LangGraph,它基于LangChain构建但采用更灵活的"图结构"工作流哲学。文章详解了LangGraph的三层核心架构(底层API、高层封装API和预构建Agent)及其完整生态系统(包括LangSmith监控、Studio可视化、CLI部署等工具)。作者计划推出系列教程,帮助开发者从零掌握这一企业级智能体开发框架,值得收藏学习。

2025-09-03 17:43:28 699

原创 程序员必看:一文搞懂矩阵乘法如何驱动大模型“思考“

文章详细解析了矩阵乘法在AI模型中的核心作用。矩阵乘法本质上是将两个线性变换组合为一个等效变换,其维度遵循"内部匹配,外部决定"的规则。在Transformer架构中,每个标记向量经过线性投影、ReLU非线性激活和维度还原来提取多层次特征。ReLU函数的引入至关重要,它为模型注入非线性特性,避免了多层线性变换等价于单一线性变换的问题。神经网络中的每一层都围绕矩阵乘法展开,构成了现代AI模型的数学基础。

2025-09-03 17:41:00 627

原创 【必看】从基础到面试问题的深度学习指南

本文详细解析了Attention机制的核心概念、计算步骤及在Transformer中的应用。介绍了Attention与传统Seq2Seq模型的区别,以及Scaled Dot-Product Attention、Multi-Head Attention等主流方法。探讨了Transformer的Encoder结构、残差连接、位置编码等关键组件,并汇总了相关面试问题,帮助读者全面掌握这一深度学习核心技术。

2025-09-02 18:01:09 1053

原创 大模型面试60问精解:基于《图解大模型》的全面答案,助力面试成功

本文是《图解大模型》一书的配套面试题集,包含60个精心设计的大模型相关问题及详细解答,涵盖模型架构、注意力机制、分词技术、位置编码、嵌入模型、提示工程和微调方法等核心知识点。这些面试题可作为《百面大模型》的补充材料,帮助求职者系统性地准备大模型相关面试,提升面试成功率,是求职者必备的参考资料。

2025-09-02 17:59:38 734

原创 AI助手的记忆管家,开源本地部署解决AI“健忘“难题

Mem0是开源AI记忆层,解决AI"健忘"问题。支持多级记忆架构,采用向量嵌入和图数据库技术实现高效记忆存储与检索。完全开源支持本地部署保护隐私,提供API接口便于集成,可与多种AI应用和框架协作。让AI助手记住用户偏好,提供个性化和连贯的交互体验。

2025-09-02 17:57:53 873

原创 必学!让大模型拥有智能记忆能力,小白也能轻松掌握的收藏级教程

Memory-R1框架通过两个强化学习微调代理解决LLM记忆问题:内存管理器动态更新外部记忆库(添加、更新、删除或忽略信息),答案代理过滤无关记忆生成高质量答案。该框架无需人工标注内存操作,通过试错学习优化任务性能,有效解决了传统RAG系统噪音干扰问题,使大模型能更智能地管理记忆并提升回答准确性。

2025-09-02 17:56:07 897

原创 构建企业级A2A天气代理系统:服务器端与客户端开发指南

代理到代理(A2A)协议正在重塑自主代理之间的发现与通信机制。A2A 摒弃了复杂的集成配置,为代理提供了一种标准化方式,使其能够自动发现彼此并实现信息的无缝交换。

2025-09-01 18:29:03 931

原创 LangGraph人工干预实战:如何给AI系统装上“紧急刹车“?

分享一个真实案例。前段时间我们开发了一款自动化运维工具,初衷是希望它能自动处理服务器故障,提升运维效率。然而在一次实际运行中,AI判定某服务需重启,便毫不犹豫地执行了操作。问题是,该服务恰好是一个正在执行批处理任务的数据库……

2025-08-29 17:31:23 881

原创 【Prompt优化指南】Agent调参不再玄学!这套科学方法拯救了我的发际线

最近在推进导购Agent项目,工程开发虽已告一段落,却在Prompt调试和效果评估环节频频“翻车”:Agent时而思维跳脱,绕着用户问题“打转”;时而胡乱调用工具,认准一个就执意走到底;有时甚至话到一半莫名卡顿,再无响应……这些问题让我不得不重新回归技术底层,翻阅论文、查找资料,试图从架构与机制设计中寻找改进的可能。

2025-08-29 17:28:51 995

原创 提示词优化实战:从入门到精通的核心技巧

提示词在大模型应用中扮演着至关重要的角色,其作用无可替代。然而,在实际使用中,我们常常容易陷入两种极端:要么过度重视提示词,要么过分轻视它。尽管目前网络上有大量现成的提示词模板,很多人也热衷于收藏这些模板,但在真实的业务场景中,这些模板往往难以直接适用。很多时候,收藏行为本身只是一种心理安慰——就像我们不断囤积学习资料,却很少真正使用。因此,在实际业务应用中,我们更应注重的是掌握提示词的使用方法和优化技巧。无需一开始就追求“完美”的提示词;正如技术选型一样,提示词没有所谓的“最佳”,只有“最适合”的

2025-08-29 17:23:44 650

原创 【多智能体系统架构】从0到1设计可扩展AI系统:核心原则与实战指南

过去一年中,人工智能代理(AI Agents)已成为技术领域最受关注的话题之一。无论是在学术研讨会还是开发者社区中,人们都在探讨同一个问题:当多个专业化的AI能够像人类团队一样协同工作时,我们的工作方式将发生怎样的根本变革?

2025-08-29 17:20:40 764

原创 彻底解决AI失忆问题!MCP智能上下文管理技术剖析

如果说传统AI如同一位患有“健忘症”的专家——每次对话都需从头开始,那么模型上下文协议(MCP)所提供的上下文管理能力,就相当于为AI赋予了“持久记忆”。这不仅仅是一次技术迭代,更是AI从单纯的“对话工具”演进为真正“协作伙伴”的关键跨越。

2025-08-28 18:16:17 1027

原创 智能问答系统两种实现方式:问答对与RAG,90%的人都选错了!

在人工智能迅猛发展的当下,智能问答系统已成为企业与用户交互的核心工具之一。无论是应用于客服机器人、知识库检索,还是研发文档的智能搜索,问答系统的性能都直接关系到用户体验和业务效率。目前,基于问答对(QA Pair)的问答系统和基于文档的检索增强生成(RAG)是两种主流的技术路径。它们之间究竟有何区别?在实际项目中应如何选择?本文将深入分析两者的优劣势及适用场景,为你提供选型参考!

2025-08-28 18:11:58 603

原创 【RAG预检索优化】6大绝技让检索精准度飙升80%,大厂都在用!

在之前的分享中,我们已经介绍了RAG系统的完整流程:从文档加载与文本分块开始,通过嵌入模型生成向量表示,进而构建索引并存储至向量数据库;在检索阶段,系统根据用户查询匹配最相关的检索结果,最终将这些匹配内容交由大模型生成最终答案。

2025-08-28 18:09:54 933

原创 Multi-Agent终极指南,从原理到实战一次搞定

多智能体系统通过将复杂任务分解为多个子任务,每个子任务由专门设计的智能体处理,相比单一智能体具有显著优势。可实现职责单一、关注点分离、降低幻觉、提高专业性、增强透明度和可解释性,便于问题定位。系统由智能体、工具和协调器组成,每个智能体专注于特定角色,通过协调器协同工作,形成高效、可靠的AI解决方案,更接近人类团队协作模式

2025-08-27 18:40:56 887

原创 【2025最新】RAG系统性能优化:阿里面试官推荐的7个关键方法

本文详细介绍了RAG检索增强生成的7大黄金法则,包括查询转换、路由优化、索引优化、高阶RAG策略、生成控制、性能优化和落地检查表。作者尼恩通过Java+AI双驱架构帮助求职者提升技术能力,应对一线企业如阿里等的技术面试,提供实际案例和代码示例,展示如何通过系统化学习实现架构转型和职业发展,解决中年危机问题,最终获得理想工作机会。

2025-08-27 18:38:47 1010

原创 千万级企业都在用的 MCP + A2A 整合方案,架构设计与实践案例完整解读

本文介绍A2A与MCP如何协同构建AI智能体协作生态。A2A协议作为智能体间的沟通语言,实现智能体发现、能力协商和任务协作;MCP作为工具箱,使智能体能连接各类企业工具。两者结合使AI从单打独斗转向团队协作,应用于智能制造、金融风控、电商客服等场景。文章详细解析了技术架构、实现细节、安全治理及未来发展趋势,为AI架构师提供了构建智能体协作生态的完整指南。

2025-08-27 18:27:45 1109

原创 2025AI大模型面试通关秘籍:这套题库让成功率提升3倍

人工智能(AI)已成为当今技术领域的重要变革力量,驱动着从自动化到预测分析等多个方向的进步。随着越来越多的行业借助AI推动创新与提升效率,市场对AI工程师的需求也在持续增长。近日,我们注意到一份涵盖关键问题并提供专业解答的指南,旨在帮助求职者更好地应对AI相关的面试挑战。本文将原指南进行编译整理,无论您是希望展现技术能力的候选人、致力于深入理解AI领域的学习者,还是旨在精准甄选优秀人才的招聘经理,本指南都将为您提供有价值的参考。

2025-08-25 20:31:57 1221

原创 【2025精选】Agent开发平台选型全攻略:从技术对比到落地实践

在人工智能技术飞速演进的今天,智能体(Agent)已成为推动产业智能化转型的核心驱动力。面对市场上众多的Agent开发平台与技术方案,如何精准选型、高效落地,已成为许多企业与开发者面临的关键挑战。本文将从技术生态、性能对比、成本控制及实践案例等多个维度,系统梳理主流Agent开发平台的优劣与适用场景,助您走出选择困境,打造真正可用、好用、可进化的智能体系统。

2025-08-25 20:28:57 613

原创 突破Agent记忆瓶颈!三层架构深度解析:如何让AI拥有“人类级“记忆?

当前,AI智能体(Agent)持续受到广泛关注,然而许多智能体系统普遍存在一个显著短板——“健忘”问题,尤其在上下文较长时更为突出。这种缺乏持续、连贯记忆能力的缺陷,严重限制了AI智能体的发展潜力与实际用户体验。由于难以真正理解用户意图并维持深层次的上下文关联,提供高度个性化的服务也变得更加困难。

2025-08-25 20:22:31 1273

原创 【Prompting技术揭秘】3大关键技巧,让LLM推理能力提升200%

大型语言模型(LLM)的强大,并不仅限于准确预测下一个词,其核心优势更体现在卓越的“推理能力”上。然而,这种能力并非自动显现,往往需要通过精心设计的提示(Prompting)技巧来有效引导与激发。本文将分享三种在实践中证明有效、且技术复杂度逐步提升的提示方法(重点在于阐述技术思路):思维链(CoT)、自一致性(Self-consistency)以及思维树(ToT)。

2025-08-21 17:31:12 1040

原创 【RAG实战宝典】手把手教你构建企业级智能问答系统

RAG(检索增强生成技术,Retrieval-Augmented Generation)是当前构建智能问答系统的一项重要技术。相较于传统检索方法,RAG能够有效减少模型幻觉,并支持知识的动态更新,因而成为企业和个人构建知识库时广泛采用的架构与解决方案。其核心优势主要包括以下两点:

2025-08-21 17:28:39 914

原创 【Agent本质探秘】LLM+Prompt+Tools = 智能体?深度剖析智能体的核心要素与架构

对智能体的理解,从一开始的初步认知,到后来的逐步深入,再到如今反而觉得难以清晰界定。在之前的理解中,智能体似乎只是一个能够调用工具的大模型,但在实际将其落地到业务场景中之后才发现,它的复杂程度远超最初的想象。

2025-08-21 17:13:52 738

原创 大模型Agent开发必看!从原理到实践:LLM+工具+记忆+规划构建智能Agent全指南

通过系统研究Agent领域的学术文献并实际测试市面主流产品,我将现有Agent产品分为两大类:独立部署型(如Manus、LoveArt等)和嵌入式(如夸克搜索Agent、飞猪旅行助手、淘宝AI万能搜等)。观察发现两类产品在发布策略上存在显著差异:独立Agent通常采用高举高打的营销策略,而互联网大厂的Agent功能则遵循严谨的迭代路径——经历长期内部测试与灰度发布后才会谨慎上线。以"淘宝AI万能搜"为例,其开发周期超过半年,虽未展现突破性创新,但在导购类Agent中已属用户体验的标杆级产品。

2025-08-19 17:25:50 1294

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除