华为OJ(计算字符串的距离)

本文介绍了一种衡量两个字符串相似度的方法——编辑距离算法,并详细解释了其背后的原理及如何使用动态规划来高效求解。文章提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述

Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。

Ex:

字符串A:abcdefg

字符串B: abcdef

通过增加或是删掉字符”g”的方式达到目的。这两种方案都需要一次操作。把这个操作所需要的次数定义为两个字符串的距离。

要求:

给定任意两个字符串,写出一个算法计算它们的编辑距离。

 

请实现如下接口

/* 功能:计算两个字符串的距离

 * 输入:字符串A和字符串B

 * 输出:无

 * 返回:如果成功计算出字符串的距离,否则返回-1

 */

    public static int calStringDistance (String charA, String  charB)

    {

       return 0;

    } 

 


知识点 字符串
运行时间限制 10M
内存限制 128
输入

输入两个字符串

输出

得到计算结果

样例输入 abcdefg abcdef
样例输出 1

这个题目和计算两个字符串的相似度是一样的。点击打开链接

很经典的可使用动态规划方法解决的题目,和计算两字符串的最长公共子序列相似。
设Ai为字符串A(a1a2a3 … am)的前i个字符(即为a1,a2,a3 … ai)
设Bj为字符串B(b1b2b3 … bn)的前j个字符(即为b1,b2,b3 … bj)
设 L(i,j)为使两个字符串和Ai和Bj相等的最小操作次数。
当ai==bj时 显然 L(i,j) = L(i-1,j-1)
当ai!=bj时 
 若将它们修改为相等,则对两个字符串至少还要操作L(i-1,j-1)次
 若删除ai或在bj后添加ai,则对两个字符串至少还要操作L(i-1,j)次
 若删除bj或在ai后添加bj,则对两个字符串至少还要操作L(i,j-1)次
 此时L(i,j) = min( L(i-1,j-1), L(i-1,j), L(i,j-1) ) + 1 
显然,L(i,0)=i,L(0,j)=j, 再利用上述的递推公式,可以直接计算出L(i,j)值。

#include<iostream>
#include<string>
using namespace std;
int caldistance(string ,string);
int min_value(int ,int,int);
int main()
{
	string s1,s2;
	cin>>s1>>s2;
	cout<<caldistance(s1,s2);
	//system("pause");
	return 0;
}
int caldistance(string s1,string s2)
{
	int len1=s1.size()+1;
	int len2=s2.size()+1;
	int ** cnt=new int*[len1];
	for(int i=0;i<len1;i++)
		cnt[i]=new int[len2];
	for(int i=0;i<len1;i++)
		cnt[i][0]=i;
	for(int j=0;j<len2;j++)
		cnt[0][j]=j;
	for(int i=1;i<len1;i++)
		for(int j=1;j<len2;j++)
			if(s1[i-1]==s2[j-1])
				cnt[i][j]=cnt[i-1][j-1];
			else
			{
				cnt[i][j]=min_value(cnt[i-1][j-1],cnt[i-1][j],cnt[i][j-1])+1;
			}
	int ret=cnt[len1-1][len2-1];
	for(int i=0;i<len1;i++)
		delete [] cnt[i];
	delete [] cnt;
	return ret;
}
int min_value(int a,int b,int c)
{
	int min;
	if(a<b)
		min=a;
	else
		min=b;
	if(min>c)
		min=c;
	return min;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值