智能分析概述
关键词:智能分析、商业智能、数据挖掘、体系架构
何谓智能分析
何谓智能分析,对智能分析、商业智能、数据挖掘等名词进行剖析,对比差异性
名词 |
定义 |
要点 |
智能分析 |
|
|
商业智能 |
企业利用现代信息技术收集、管理和分析结构和非结构的商务数据和信息,创造和累计商务知识和见解,改善商务决策水平,采取有效的商务行动,完善各种商务流程,提升各方面商务绩效,增强综合竞争力的智慧和能力 |
数据,信息,知识 |
数据挖掘 |
在大量数据中发现潜在的、有价值的数据间关系(知识)的过程 |
|
数据源:操作性数据库、历史数据、外部数据、数据仓库中的信息
数据仓库的主要技术:数据抽取、转换和加载;数据管理;数据访问;元数据
数据挖掘系统的发展
数据挖掘过程模型
KDNuggests(www.kdnuggets.com/software)上介绍的近百个数据挖掘系统,大致可以将数据挖掘模型分为如下两种类型:
模型 |
过程 |
备注 |
典型系统 |
Fayyad总结的过程模型 |
数据选择 数据预处理 数据转换 数据挖掘 解释和评估 |
循环迭代的过程,数据挖掘系统的功能是发现模式,生成模型 |
IBM Intelligent Miner SAS Enterperise Miner DBMiner |
CRISP-DM标准的过程模型 |
业务理解 数据理解 预处理 建模 评估 部署 |
Cross-Industry Process for Data Mining,交叉行业数据挖掘过程标准。将挖掘技术与应用紧密结合,更加注重数据挖掘的模型的质量和如何与业务问题相结合、如何应用挖掘出的模型等实际应用中用户最关心的问题。 |
|
四代挖掘系统
四代是基于技术的划分,下表从技术层面介绍数据挖掘系统的演变过程:
代 |
特征 |
数据挖掘算法 |
集成 |
分布计算模型 |
数据模型 |
第一代 |
作为一个独立的应用 |
支持一个或者多个算法 |
独立的系统 |
单个机器 |
向量数据 |
第二代 |
和数据库及数据仓库集成 |
多个算法:能够挖掘一次不能放进内存的数据 |
数据管理系统,包括数据库和数据仓库 |
同质、局部区域的计算机群集 |
有些系统支持对象,文本和连续的媒体数据 |
第三代 |
和预言模型系统集成 |
多个算法 |
数据管理和预言模型系统 |
Intranet/extranet网络计算 |
支持半结构化数据和web数据 |
第四代 |
和移动数据/各类计算设备的数据联合 |
多个算法 |
数据管理、预言模型、移动系统 |
移动和各种计算设备 |
普遍存在的计算模型 |
1) 第一代系统:一般一次性调进内存进行处理。典型的系统如Salford Systems公司早期的CART系统。
2) 第二代系统:与数据库管理系统(DBMS)集成,支持数据库和数据仓库,和它们具有高性能的接口,具有高的可扩展性。典型的系统如DBMiner,能通过DMQL挖掘预言进行挖掘操作。
3) 第三代系统:第三代数据挖掘系统一个重要的优点是由数据挖掘系统产生的预言模型能够自动地被操作型系统吸收,从而与操作型系统中的预言模型相联合提供决策支持的功能。
4) 第四代系统:当前的一个研究领域。
初步结论
数据管理系统和数据挖掘系统之间有着紧密的联系,结合国内现状,当前尚未应用业界较成熟的数据管理和挖掘技术。数据管理系统有着很成熟的应用,如Oracle提供一整套数据仓库和OLAP分析的解决方案,下一阶段我们需要以数据仓库技术为重点,构建针对挖掘特定领域有价数据的数据仓库。
数据挖掘算法,目前的挖掘系统做了大量的应用,但是我们需要了解挖掘的算法,根据我们的业务需求来进行改进。