下载openpose+caffe:
git clone --recursive https://github.com/CMU-Perceptual-Computing-Lab/openpose.git
完成后进入openpose/models,运行./getModels.sh下载模型,同时开始以下操作。
编译安装caffe
1. 安装依赖库:
sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev #(这几个库下面的 .sh 脚本中没有写,需要先手动装上)
2. 进入openpose/3rdparty/caffe,
(1)配置Makefile.config文件
cp Makefile.config.Ubuntu16_cuda8.example Makefile.config
修改Makefile.config文件(将Python2环境注销,换成Anaconda3下的Python环境.)
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61
# Deprecated
# CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
# -gencode arch=compute_20,code=sm_21 \
# -gencode arch=compute_30,code=sm_30 \
# -gencode arch=compute_35,code=sm_35 \
# -gencode arch=compute_50,code=sm_50 \
# -gencode arch=compute_52,code=sm_52 \
# -gencode arch=compute_60,code=sm_60 \
# -gencode arch=compute_61,code=sm_61 \
# -gencode arch=compute_61,code=compute_61
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 \
# /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
ANACONDA_HOME := $(HOME)/anaconda3/envs/open-mmlab
PYTHON_LIBRARIES := boost_python-py35 python3.7m
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python3.7m \
$(ANACONDA_HOME)/lib/python3.7/site-packages/numpy/core/include
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
# PYTHON_LIB := /usr/lib /usr/local/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
其中,PYTHON_LIBRARIES := boost_python-py35 python3.7m #boost_python-py35 是看/usr/lib/x86_64-linux-gnu/文件夹下的libboost_python文件,启动python3编译。python3.7m是虚拟环境下的python版本
(2)打开install_caffe_if_cuda8.sh,删除66-70行
if [[ $ubuntu_le_14 == true ]]; then
cp Makefile.config.Ubuntu14_cuda8.example Makefile.config
else
cp Makefile.config.Ubuntu16_cuda8.example Makefile.config
fi
运行 ./install_caffe_if_cuda8.sh 编译安装caffe
编译安装openpose+python api
(1)安装camke-gui
sudo apt-get install cmake-qt-gui
(2)编译安装,终端运行 sudo cmake-gui
source code
路径填 XXX/openpose/
,build the binaries
填 XXX/openpose/build/
设置添加cmake PYTHON相关执行路径,用于python api编译, 点击Add_Entry,添加
PYTHON_EXECUTABLE:FILEPATH=~/anaconda3/envs/$envname$/bin/python3.7
PYTHON_LIBRARY:FILEPATH=~/anaconda3/envs//$envname$/lib/libpython3.7m.so
(3)点击 configure,将下载开始配置并下载 OpenPose 的模型,成功后点击 generate。
(4)在 openpose/build/
中打开终端,执行 sudo make -j
编译 OpenPose,成功后在/openpose/
中打开终端,执行 ./build/examples/openpose/openpose.bin --video examples/media/video.avi
,运行 OpenPose 官方训练好的模型测试视频
参考:https://blog.csdn.net/bairw_Bella/article/details/106673414
caffe问题:https://www.cnblogs.com/zxj9487/p/11393546.html