ElasticSearch离线分析-构建千亿级日志分析系统

本文介绍了在大数据背景下,为解决日志分析成本和查询压力,构建离线日志分析系统的方法。系统包括采集器、云存储、处理器和存储分析四个模块,使用ElasticSearch进行存储和分析,并结合Kibana提供查询工具。通过离线方式,能够满足回溯分析、特征分析等需求,同时降低成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、背景介绍

上篇讲到实时日志的采集和分析,本篇介绍离线日志的分析,为何要做离线日志分析?业务场景的不同,系统的规模扩大后,日志量随着上升,上升到需要付出昂贵的成本才能满足分析,动辄每天几TB的日志,给索引和查询都带来很大的压力,

为尽量满足查询分析的诉求又合理控制成本,我们需要设计一套离线日志采集与分析系统,主要满足如下业务场景:

1)回溯半个月前的问题,遇到长假系统会在线上运行一周无人分析定位业务问题,而实时系统存储的数据量有限,半个月前的日志在实时系统已经查不到(过期删除),为回溯定位问题,我们可以从离线日志系统中拉取日志进行分析;

2)访问日志特征分析,例如,分析过去一个月的网站访问日志;

3)分析业务系统的全量日志,很多同学为定位问题方便习惯在线上打印很多Debug日志,Debug记录了详细的流水信息,往往日志量比较大,如果实时上传会给实时日志系统带来很大冲击,合理的做法是上传关键的Info日志,解决大部分问题定位,如需查找Debug日志进行详细的问题定位可以通过离线日志进行分析。

 

架构包含采集器、云存储、处理器、存储分析四个模块。

2、采集器

离线采集文件日志,本篇介绍的架构里使用Go语言开发了一个简单的离线日志采集器,监控日志文件目录,定期采集日志上传到AWS S3,如果没有使

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值