MMSet2
时间限制:3秒 空间限制:131072K
题目描述
给定一棵n个节点的树,点编号为1…n。
Q次询问,每次询问给定一个点集S,令
,

你需要求出
。

其中dist(u,v)表示树上路径(u,v)的边数。
输入描述:
第一行一个整数n,接下来n−1行每行两个整数表示树上的一条边。 接下来一行一个整数Q,接着Q行,每行第一个数是|S|,剩下|S|个互不相同的数代表这个集合。
输出描述:
输出Q行,每行一个整数表示答案。
示例1
输入
3 1 2 1 3 1 2 2 3
输出
1
备注:
n≤3×105,|S|≥1,∑|S|≤106
这题要求最大值得最小值,那么答案点一定就在集合中两个点的中心点
因为在这条路径外的点到这两个点的路径长度虽然大,但是求得是最小值所以 一定是最长的一条路径的中心点
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<vector>
#include<map>
#include <bits/stdc++.h>
using namespace std;
const int N = 300000+10;
typedef long long LL;
const LL mod = 998244353;
int a[N];
vector<int>p[N];
int dep[N],fa[N][20];
void dfs(int u,int d,int f)
{
dep[u]=d,fa[u][0]=f;
for(int i=0; i<p[u].size(); i++)
{
int v=p[u][i];
if(v==f) continue;
dfs(v,d+1,u);
}
return ;
}
void init(int n)
{
int k=(int)(1.0*log(1.0*n)/log(2.0));
for(int i=1;i<=k;i++)
for(int j=1;j<=n;j++)
fa[j][i]=fa[fa[j][i-1]][i-1];
return ;
}
int get(int x,int y,int n)
{
if(dep[x]<dep[y]) swap(x,y);
int d=dep[x]-dep[y];
int k=(int)(log(1.0*n)/log(1.0*2));
for(int i=0;i<=k;i++)
if((1<<i)&d)x=fa[x][i];
if(x==y) return x;
if(x!=y)
{
for(int i=k;i>=0;i--)
if(fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
}
return fa[x][0];
}
int lca(int x,int y,int n)
{
int z=get(x,y,n);
return dep[x]+dep[y]-2*dep[z];
}
int main()
{
int n;
scanf("%d", &n);
for(int i=1; i<n; i++)
{
int x, y;
scanf("%d %d", &x, &y);
p[x].push_back(y),p[y].push_back(x);
}
dep[0]=0,fa[0][0]=0;
dep[1]=1;
dfs(1,1,0);
init(n);
int q;
scanf("%d", &q);
while(q--)
{
int m, ans=0;
scanf("%d", &m);
int root=0;
for(int i=1; i<=m; i++)
{
scanf("%d", &a[i]);
if(dep[a[i]]>dep[root]) root=a[i];
}
for(int i=1;i<=m;i++)
if(a[i]!=root) ans=max(ans,lca(root,a[i],n));
printf("%d\n",(ans+1)/2);
}
return 0;
}