FFmpeg中的object detection和classification

本文介绍了在FFmpeg中实现物体检测和分类的过程,包括使用Docker进行演示,涉及的关键文件内容及其作用,以及配置FFmpeg时针对OpenVINO和TensorFlow的特殊步骤。通过--enable-libtensorflow和--enable-libopenvino选项启用后端,并利用--enable-libfontconfig等选项实现可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前段时间和Fu Ting同学一起为FFmpeg加了object detection和classification的相关功能,暂时告一段落,这里做个总结,记录一下备忘。

首先,最新结构图镇贴。 file

1. 用Docker演示

用docker的方式,在linux系统(我用的是ubuntu18.04)执行如下命令

$ cd /tmp/
$ git clone https://github.com/guoyejun/ffmpeg_dnn.git/
$ cd ffmpeg_dnn/
$ cd docker/
$ ls
build.sh  Dockerfile  run.sh

# 下面命令会生成一个image
$ ./build.sh

# 下面命令会进入刚刚生成image的container
$ ./run.sh

进入container后,执行如下命令

# 用OpenVINO后端进行face detection和emtion classifcation,
# 最后的转码结果是 faces.mp4
root@63b38426be65:/workspace# ./detect_face_classify_emotion_with_openvino.sh

# 用TensorFlow后端进行object detection,
# 最后的转码结果是objects.mp4
root@63b38426be65:/workspace# ./detect_objects_with_tensorflow.sh

回到host端,用如下命令可以获取container中的mp4文件,只需将命令行中的{container_id}换成你的container id即可,可用docker container ls来查看。


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值