从零实现深度学习框架——Softmax回归中的数值稳定

本文介绍了如何实现数值稳定的Softmax和交叉熵损失,通过减去最大值避免了上溢和下溢问题。讨论了LogSoftmax与负对数似然损失的关系,并提供了实现代码,有助于理解深度学习模型的底层逻辑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

本着“凡我不能创造的,我就不能理解”的思想,本系列文章会基于纯Python以及NumPy从零创建自己的深度学习框架,该框架类似PyTorch能实现自动求导。
💡系列文章完整目录: 👉点此👈
要深入理解深度学习,从零开始创建的经验非常重要,从自己可以理解的角度出发,尽量不适用外部框架的前提下,实现我们想要的模型。本系列文章的宗旨就是通过这样的过程,让大家切实掌握深度学习底层实现,而不是仅做一个调包侠。

在上篇文章中我们了解了逻辑回归中如何确保数值稳定,同样,Softmax回归也存在这个问题。

数值稳定的Softmax

我们先来回顾下Softmax函数的公式:
Softmax ( x i ) = exp ⁡ ( x i ) ∑ j = 1 n exp ⁡ ( x j ) (1) \text{Softmax}(x_i) = \frac{\exp(x_i)}{\sum_{j=1}^n \exp(x_j)} \tag{1}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

愤怒的可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值