Python爬虫实战:研究jieba相关技术

1. 引言
1.1 研究背景与意义

随着互联网技术的飞速发展,网络新闻已成为人们获取信息的主要渠道之一。每天产生的新闻文本数据量呈爆炸式增长,如何从海量文本中高效提取有价值的信息,成为信息科学领域的重要研究课题。文本分析技术通过对文本内容的结构化处理和语义挖掘,能够揭示隐藏在文本中的主题、情感和趋势,为舆情监测、信息检索、内容推荐等应用提供技术支持。

1.2 研究目标与方法

本研究旨在构建一个完整的新闻文本分析系统,实现从网页数据采集到文本主题挖掘的自动化流程。具体研究目标包括:

  1. 设计并实现一个可扩展的新闻爬虫框架,能够高效稳定地获取目标网站的新闻内容
  2. 应用 jieba 分词技术对中文新闻文本进行分词处理,提高分词准确性
  3. 基于 TF-IDF 算法实现关键词提取,识别新闻中的核心主题
  4. 通过可视化手段直观展示文本分析结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值