1. 引言
1.1 研究背景与意义
在大数据与人工智能技术快速发展的背景下,数据已成为企业决策、学术研究与产品创新的核心资源。互联网作为全球最大的信息载体,蕴含海量结构化、半结构化与非结构化数据,但这些数据分散在各类网站中,手动采集效率极低。网络爬虫技术通过模拟人类浏览行为,可自动化、规模化地提取目标信息,成为连接信息源与数据应用的关键桥梁。
BlackWidow 作为综合性信息聚合平台,涵盖科技动态、财经资讯、行业报告等多领域内容,其数据具有较高的时效性与研究价值。针对该平台设计专用爬虫,不仅能实现信息的批量获取,为舆情分析、趋势预测等应用提供数据支撑,还能为应对中等复杂度反爬机制的爬虫系统设计提供实践参考。
1.2 国内外研究现状
网络爬虫技术起源于 20 世纪 90 年代搜索引擎的发展需求,Google 的分布式爬虫系统与 Apache Nutch 等开源项目奠定了现代爬虫技术基础。近年来,随着 Python 生态的完善,其凭借简洁语法与丰富库支持成为爬虫开发的首选语言。
国外研究聚焦于高效爬取算法与分布式架构,如基于深度强化学习的动态爬取策略优化、基于