1. 引言
1.1 研究背景
在大数据时代,数据已成为重要的生产要素,而互联网作为全球最大的信息载体,蕴含着海量有价值的数据。根据 IDC 预测,到 2025 年全球数据圈将增长至 175ZB,其中网页数据占比超过 60%。如何从这海量信息中快速、准确地提取所需数据,成为各行各业面临的重要课题。
网络爬虫技术作为数据获取的核心手段,通过模拟人类浏览行为,自动抓取网页内容并提取结构化信息,已广泛应用于搜索引擎、价格监控、舆情分析、学术研究等领域。Python 语言因其语法简洁、生态丰富(拥有 requests、Scrapy 等优秀爬虫库),已成为爬虫开发的主流选择,据 TIOBE 指数显示,Python 在数据处理领域的使用率连续 5 年位居榜首。
然而,面对日益复杂的网站结构和反爬机制(如 IP 封锁、验证码、动态内容加载等),传统的简单爬虫脚本往往难以应对。因此,构建一套灵活、健壮、可扩展的爬虫系统,对于提高数据抓取效率和稳定性具有重要意义。
1.2 研究目的与意义
本文的研究目的是:基于 Python 语言,设计并实现一套轻量级 Spider 框架,结合实