【中等】力扣算法题解析LeetCode254:因子的组合

关注底部名片达文汐,即可获得本题完整源码

题目链接:🔒LeetCode254:因子的组合

给定一个正整数 n,返回所有可能的因子组合。因子必须满足:

  • 大于 1 且小于 n
  • 组合中的因子按非降序排列
  • 结果中不包含 n 本身(例如 n = n 无效)
  • 结果无重复组合

示例1
输入: n = 1
输出: []

示例2
输入: n = 12
输出:
[
[2, 6],
[2, 2, 3],
[3, 4]
]

示例3
输入: n = 32
输出:
[
[2, 16],
[2, 2, 8],
[2, 2, 2, 4],
[2, 2, 2, 2, 2],
[2, 4, 4],
[4, 8]
]


解题思路

采用 回溯法 + 剪枝 优化:

  1. 回溯框架

    • 从起始因子 start(初始为 2)开始遍历。
    • 若当前因子 i 能整除 n,将其加入路径,递归分解 n/i
  2. 关键剪枝

    • 因子范围:仅需遍历 i ≤ √n,避免重复(如 12 的因子 34 只需处理到 √12≈3.46)。
    • 非降序保证:递归时起始因子设为 i,确保后续因子不小于当前因子。
  3. 终止条件

    • n = 1 且路径长度 > 1 时,保存有效组合。
    • 循环结束后,若路径非空,将剩余值 n 加入路径(如 [3, 4] 中的 4)。

代码实现(Java版)
class Solution {
    public List<List<Integer>> getFactors(int n) {
        List<List<Integer>> res = new ArrayList<>();
        backtrack(n, 2, new ArrayList<>(), res);
        return res;
    }

    private void backtrack(int n, int start, List<Integer> path, List<List<Integer>> res) {
        // 遍历范围:start → √n
        for (int i = start; i * i <= n; i++) {
            if (n % i == 0) {
                path.add(i);          // 选择当前因子
                backtrack(n / i, i, path, res); // 递归分解剩余值
                path.remove(path.size() - 1); // 回溯
            }
        }
        // 保存有效组合(避免 n 本身单独作为结果)
        if (!path.isEmpty()) {
            path.add(n);
            res.add(new ArrayList<>(path));
            path.remove(path.size() - 1);
        }
    }
}

代码说明
  1. 核心变量

    • res:结果集。
    • path:当前搜索路径,存储临时因子组合。
    • start:起始因子,确保因子非降序且去重。
  2. 剪枝优化

    • 循环条件i * i <= n 等价于 i ≤ √n,减少无效遍历(如 n=12 时只需检查 2, 3)。
    • 递归起点backtrack(n/i, i, ...) 保证后续因子 ≥ i,避免重复组合(如 [2,2,3] 有效,[2,3,2] 无效)。
  3. 终止处理

    • 循环结束后,若 path 非空,将剩余值 n 加入路径(如 12 → [3,4] 中的 4 在递归退出后添加)。

在这里插入图片描述

我的名片👇👇👇👇👇👇👇👇👇👇👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

达文汐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值