【简单】力扣算法题解析LeetCode374:猜数字大小

关注文末推广名片,即可免费获得本题测试源码

题目来源:LeetCode 374:猜数字大小

问题抽象: 设计一个猜数字游戏,目标是通过调用预定义的 guess API 接口,高效找出一个在 [1, n] 范围内的目标整数 target,满足以下核心需求:

  1. API 交互规则

    • 预定义函数 guess(int num) 返回整型结果:
      • -1:所猜数字 num 大于 target
      • 1:所猜数字 num 小于 target
      • 0num 等于 target(成功)。
    • 需实现函数 guessNumber(int n),返回目标值 target
  2. 优化目标

    • 最小化 API 调用次数:利用 二分查找 策略(时间复杂度 O(log n));
    • 禁止遍历所有数字(避免 O(n) 调用)。
  3. 边界处理

    • 最小范围n=1 时直接返回 1(无需调用 API);
    • 整数溢出:二分查找中点计算需用 left + (right - left) / 2 避免溢出;
    • 无解情况:输入保证目标值必在 [1, n] 内(无需额外检查)。
  4. 计算约束

    • 时间复杂度 O(log n):二分查找最多调用 log₂(n)guess
    • 空间复杂度 O(1):仅需存储左右边界及中点;
    • 输入范围:1 ≤ n ≤ 2^31 - 1(需处理大整数)。

输入:整数 n(目标值范围上限)
输出:目标整数 target1 ≤ target ≤ n

函数签名

public class Solution extends GuessGame {
    public int guessNumber(int n) {
        // 二分查找实现
    }
}

预定义接口

class GuessGame {
    int guess(int num) { /* 由系统实现 */ }  
}

解题思路

题目要求在 1n 之间猜一个数字,通过调用预定义的 guess 接口获得反馈。解题关键在于高效缩小搜索范围,使用二分查找算法可以将时间复杂度优化至 O ( log ⁡ n ) O(\log n) O(logn),空间复杂度为 O ( 1 ) O(1) O(1)

算法步骤

  1. 初始化边界:左边界 left = 1,右边界 right = n
  2. 二分查找
    • 计算中间值 mid = left + (right - left) / 2(避免整数溢出)。
    • 调用 guess(mid) 获取结果:
      • 若返回 0,直接返回 mid(找到目标)。
      • 若返回 -1,说明 mid 偏大,调整右边界 right = mid - 1
      • 若返回 1,说明 mid 偏小,调整左边界 left = mid + 1
  3. 循环终止:当 left <= right 时持续搜索(题目保证解存在,无需额外边界判断)。

代码实现(Java版)🔥点击下载源码

public class Solution extends GuessGame {
    public int guessNumber(int n) {
        int left = 1;
        int right = n;
        while (left <= right) {
            int mid = left + (right - left) / 2; // 防止计算溢出
            int res = guess(mid); // 调用预定义API
            if (res == 0) {
                return mid; // 猜中目标,直接返回
            } else if (res == -1) {
                right = mid - 1; // 数字过大,缩小右边界
            } else {
                left = mid + 1; // 数字过小,缩小左边界
            }
        }
        return -1; // 理论不会执行(题目保证解存在)
    }
}

代码说明

  1. 二分查找优化
    • 使用 left + (right - left) / 2 计算中间值,避免 (left + right) 可能导致的整数溢出。
    • 每次迭代将搜索范围减半,确保 O ( log ⁡ n ) O(\log n) O(logn) 时间复杂度。
  2. 边界调整
    • guess(mid) = -1:目标小于 mid,将右边界设为 mid - 1
    • guess(mid) = 1:目标大于 mid,将左边界设为 mid + 1
  3. 终止条件left <= right 保证搜索区间有效性,找到目标时立即返回。
  4. 返回值:循环内必会命中目标(题目数据保证),最后的 return -1 仅为语法需要。

提交详情(执行用时、内存消耗)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

达文汐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值