最短帧长习题总结

首先怎么计算最短帧长?

最短帧长=2\tau×数据传输速率。 其中,2\tau是争用期,也是往返传播时延,即传播时延的2倍。也就是说信号在最远两个端点之间往返传输的时间。

关于这块的知识在之前数据链路层也有总结过。链接如下:计网第三章(数据链路层)(三)(PPP协议、CSMA/CD协议和CSMA/CA协议)

 题中告诉了信号在介质中的传播延迟为5\mu s/km,也就是说传播1km需要5\mu s。传输介质的长度为100m。那么在整个介质中的传播时延就是100*5*10^{-6}*10^{3}=0.5\mu s

则争用期等于2*0.5=1\mu s。 题目还告诉了数据传播速率,则在一个争用期内发送的数据量为

1*10^{-6}*100*10^{6}=100bit

由于在刚开始发送的一个争用期内若没有检测到碰撞,在以后的发送中也就不会产生碰撞。

该站向网上发送100bit数据,刚好达到了一个往返传播时延,而这期间也没有检测到冲突,所以此后不会发现冲突。

题中告诉了信号在介质中的传播速率,则传播时延=介质长度/信号在介质中的传播速率,算出传播时延=5\mu s, 则争用期为10\mu s。那么一个争用期内发送的数据量为10*10^{-6}*10*10^{-6}=100bit,所以此后不会发现冲突。

 题中告诉了信号传播速速时为200m/\mu s,即传播200m需要1\mu s。现在总共有1000m,那么传播时延为1000/200=5\mu s,所以争用期为10\mu s

(1)第一问有两个小问,首先注意条件是两台主机都要检测到冲突时刻为止。

最短时间:

要达到这个条件所需要的最短时间就是两台主机同时向对方发送数据。

产生碰撞的时候,双方的数据应该都走了总线的一半(原因可以看前面对于这块的总结),那么冲突再返回到各自主机。

各自发送的数据和冲突所经历的路程和刚好是一次总线长度,而走一次总线的传播时延我们已经计算出来了,所以最短需要5\mu s

最长时间:

而最长时间就是当主机甲向乙先发送数据,发送的数据快到达乙时,乙才开始发送数据。

这时候乙可以立即检测到冲突,但是甲需要等待数据从乙到甲返回。

所以甲发送数据到乙为一个总线长度,冲突从乙到甲返回又是一个总线长度,所以甲发送的数据加上冲突返回到甲的路程刚好是两个总线长度,那么所需要的时间就是一个往返传播时延,也就是一个争用期,即10\mu s

(2)一个争用期内发送的数据量为10*10^{-6}*10*10^{-6}=100bit,所以此后不会发现冲突。

传播时延为4.5*5=22.5\mu s。 那么争用期为45\mu s

(4)分析和上一题一样,所以直接写答案,最短时间为22.5\mu s,最长时间为45\mu s。那么数据帧至少得45*10^{-6}*10*10^{6}=450bit

(5)注意:这一问应该是A先发送了64B,因为以太网规定最小帧长是64B,最大帧长虽然因版本不同长度也不一定,但经过博主在网上查阅资料基本都是1518B和1536B。反正64KB太离谱了,而且本问实际上与谢希仁第八版的3-24题对应,那道题的条件就是A先发送64B。所以本题就按64B计算。

其实这问就是想考察争用期的理解,我们都说在一个争用期内发送数据没有检测到碰撞,那么后续发送的数据就不会检测到碰撞。所以B起码应该在45\mu s之后发送数据,A才不会检测到冲突。

A发送的帧的实际长度是(64+8)*8=576bit,以太网网段的传输速率是10Mbps,所以就有576/\left (10 *10^{6} \right )= 57.6\mu s。所以B发送数据应该是在57.6\mu s之后。

注意:这一问的题目问题比较多,因为它是从谢希仁老师的教材上改过来的题,但是没有改好,读这道题目总是感觉题目说的不严谨,解答也只是博主的一面之解,不保证就是正确的。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值