MySQL如何解决脏读、不可重复读、幻读?底层原理?

本文详细介绍了数据库的四种隔离级别:读未提交、读已提交、可重复读和串行化,以及它们如何解决丢失修改、脏读、不可重复读和幻读问题。通过分析共享锁和排它锁的作用,阐述了MySQL如何在不同隔离级别下处理这些问题。同时,文章提到了InnoDB引擎的MVCC机制在可重复读级别下解决幻读的原理,以及Next-Key Lock如何解决当前读下的幻读问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据库隔离级别

        四种隔离级别:读未提交,读已提交,可重复读,串行化

        脏读,不可重复读,幻读

二、数据库两种锁

        1.共享锁,又称S锁、读锁,事务A对一个资源加了S锁后其他事务仍能共享读该资源,但不能对其进行写,直到A释放锁为止。

        2.排它锁,又称X锁、写锁,事务A对一个资源加了X锁后只有A本身能对该资源进行读和写操作,其他事务对该资源的读和写操作都将被阻塞,直到A释放锁为止。

三、四种隔离级别都解决了什么问题?具体怎么解决的?
3.1【 读未提交(READ_UNCOMMITED)解决丢失修改】

        [ 丢失修改:多个事务同时盯上了一个数据,然后各写各的,谁把谁覆盖了都不知道,总之谁写的快谁就会被覆盖丢失信息。]

        为了解决丢失修改的写覆盖问题,未提交读规定:

        1.事务A对当前被读取的数据不加锁;

        2.事务A开始更新一行数据时,必须先对其加共享锁,直到事务结束才释放;

从第二点就可以看出,事务A在写入数据的时候加了共享锁,其他事务只能读,不能写,所以事务A在写的过程中也就不会被覆盖,从而就解决了丢失修改的问题

然而根据未提交读的原理, 其会引入新的问题:脏读。


3.2【读已提交(READ_COMMITED)解决脏读】

        [ 脏读:指别的事务修改后还没提交数据,事务A就可以读到这些数据,比如银行不小心转了一个亿到你的账户,银行人员发现幸好还没提交,此时银行人员马上回滚撤销操作,但你却在其之前取读发现自己账户居然有一个亿,这就是脏

<think>好的,我现在需要帮助用户了解MySQL底层原理。用户提到之前给出的回答引用了三篇关于MySQL底层执行原理、MVCC和索引的文章,但用户现在想更全面地了解MySQL底层原理。我需要结合之前的引用内容,同时补充其他关键部分,确保回答结构清晰,覆盖主要模块。 首先,我需要整理MySQL的架构层次。根据引用[1],用户可能已经知道binlog归档和存储引擎层的一部分。我应该从连接层、服务层、存储引擎层和日志系统这几个方面展开。连接层涉及线程池和连接管理,服务层包括SQL接口、解析器、优化器和执行器,存储引擎层需要对比InnoDB和MyISAM,日志系统包括redo log、undo log和binlog,这些在引用[1]和[3]中都有提及。 接下来是SQL执行流程。用户可能对查询如何执行感兴趣,需要详细说明解析、优化、执行的过程。比如解析器生成语法树,优化器选择执行计划,执行器调用存储引擎接口。这里可以引用[1]中的binlog归档步骤,说明执行后的日志记录。 然后是索引机制,引用[3]提到主键索引、普通索引和前缀索引,以及回表问题。我需要详细解释B+树的结构,为什么MySQL选择B+树,聚簇索引和非聚簇索引的区别,以及覆盖索引和索引下推技术。这部分需要结合用户提到的索引内容,确保准确。 事务与MVCC部分,引用[2]强调MVCC的实现方式,指出官方文档的正确性。需要解释ACID特性,隔离级别,以及InnoDB如何通过隐藏字段(DB_TRX_ID、DB_ROLL_PTR)和ReadView来实现MVCC,避免快照的说法。这里要纠正常见的误解,比如创建时间和删除时间字段的错误观点,并详细说明ReadView的工作流程。 日志系统部分,引用[1]提到了binlog,需要补充redo log和undo log的作用。解释两阶段提交,如何保证事务的持久性和崩溃恢复,以及binlog的归档使用场景。 机制也是一个重点,需要区分行、表、意向和间隙,说明InnoDB如何实现不同隔离级别下的策略,比如可重复使用间隙防止。 最后是存储引擎对比,用户可能想知道InnoDB和MyISAM的区别,适用场景,以及内存临时表的使用。 在回答过程中,需要保持结构清晰,分点说明,使用示例和公式(比如B+树的高度计算),代码块展示日志命令,表格对比存储引擎,以及流程图说明SQL执行步骤。同时,生成的相关问题要引导用户深入思考,比如索引优化、MVCC实现细节、日志系统协同等。 需要检查是否有遗漏的部分,比如缓冲池(Buffer Pool)、change buffer等,但用户可能更关注核心原理。确保引用正确的文献,避免错误,比如MVCC部分要依据官方文档而非《高性能MySQL》的过时观点。最后,语言要口语化,避免使用Markdown格式,保持自然流畅。</think>### MySQL底层原理详解 MySQL底层实现涉及**存储引擎架构**、**事务处理机制**和**索引优化策略**等核心模块。以下从关键组件出发,结合源码级分析进行阐述: --- #### 一、MySQL架构层次 1. **连接层(Connector Layer)** - 通过线程池管理客户端连接,每个连接对应一个线程。 - 认证协议:基于`mysql_native_password`或`caching_sha2_password`实现身份验证[^1]。 2. **服务层(Server Layer)** - **SQL接口**:接收SQL语句,返回查询结果。 - **解析器(Parser)**:生成语法树(AST),例如: ```sql SELECT * FROM users WHERE id=1; -- 解析为: Query{ command: SELECT, columns: [*], table: users, where: Condition{id=1} } ``` - **优化器(Optimizer)**:基于代价模型选择执行计划(如是否使用索引)。 - 通过`EXPLAIN`可查看优化器决策过程[^3]。 3. **存储引擎层(Storage Engine)** - **InnoDB**:支持事务、行级、MVCC(多版本并发控制)。 - **MyISAM**:仅支持表级,无事务特性。 4. **日志系统** - **Redo Log**:保证事务持久性(WAL机制)。 - **Undo Log**:实现事务回滚和MVCC。 - **Binlog**:归档日志(主从复制基础)[^1]。 --- #### 二、SQL执行流程(以SELECT为例) ```mermaid graph TD A[客户端] --> B(连接器) B --> C{查询缓存} C -->|命中| D[直接返回结果] C -->|未命中| E[解析器] E --> F[预处理器] F --> G[优化器] G --> H[执行器] H --> I[存储引擎] I --> J[返回数据] ``` - **关键点**: - 查询缓存因高并发场景性能问题,在MySQL 8.0中被移除[^1]。 - 执行器通过调用存储引擎接口(如`handler::read_row()`)逐行获取数据。 --- #### 三、索引机制(InnoDB实现) 1. **B+树索引结构** - **聚簇索引**:叶子节点存储完整数据行(主键索引)。 - **二级索引**:叶子节点存储主键值,需回表查询[^3]。 - 示例: ```sql -- 创建前缀索引 CREATE INDEX idx_name ON users(name(10)); ``` - 前缀索引通过截取字段前N字节构建,减少索引体积[^3]。 2. **索引选择策略** - **覆盖索引**:当查询字段全部包含在索引中时,避免回表。 ```sql SELECT id FROM users WHERE name='Alice'; -- 使用name索引直接返回id ``` - **索引下推(ICP)**:在存储引擎层过滤数据,减少服务层负载。 3. **B+树高度计算** - 假设每页16KB,主键类型为BIGINT(8B),指针6B: $$ \text{单页记录数} = \frac{16384}{8+6} \approx 1170 $$ - 3层B+树可存储约$1170^3=1.6$亿条数据。 --- #### 四、事务与MVCC 1. **ACID实现** - **原子性(A)**:通过Undo Log回滚日志实现。 - **隔离性(I)**:基于和MVCC机制。 2. **MVCC核心实现** - **隐藏字段**: - `DB_TRX_ID`:最后修改事务ID(6B)。 - `DB_ROLL_PTR`:回滚指针(7B),指向Undo Log记录[^2]。 - **ReadView**: ```c++ // 源码片段(trx0sys.h) struct ReadView { trx_id_t m_low_limit_id; // 高水位(事务ID>=此值不可见) trx_id_t m_up_limit_id; // 低水位(事务ID<此值可见) ids_t m_ids; // 活跃事务列表 }; ``` - 可见性判断规则: - 如果`DB_TRX_ID < m_up_limit_id`:数据可见。 - 如果`DB_TRX_ID >= m_low_limit_id`:数据不可见。 - 如果`DB_TRX_ID`在`m_ids`中:数据不可见(未提交事务)[^2]。 --- #### 五、日志系统协同 1. **Redo Log与Binlog协同(两阶段提交)** ```mermaid sequenceDiagram participant TC participant InnoDB participant Binlog TC->>InnoDB: Prepare阶段(写Redo Log) TC->>Binlog: Write Binlog TC->>InnoDB: Commit阶段(Redo Log标记提交) ``` - **崩溃恢复**:通过比较Redo Log和Binlog决定事务提交或回滚[^1]。 --- #### 六、机制 1. **类型** | 类型 | 作用范围 | 冲突检测 | |-------------|------------------|--------------------------------| | 行(X) | 单行记录 | 与其他X/S冲突 | | 间隙 | 索引记录间的间隙 | 防止(RR隔离级别特有) | 2. **死检测** - InnoDB使用等待图(Wait-for Graph)算法检测死,超时时间由`innodb_lock_wait_timeout`控制。 --- #### 七、存储引擎对比 | 特性 | InnoDB | MyISAM | |---------------------|----------------------------|--------------------| | 事务支持 | ✅ ACID兼容 | ❌ | | 粒度 | 行级 | 表级 | | 崩溃恢复 | Redo Log保障 | 仅修复表文件 | | 外键支持 | ✅ | ❌ | | 内存临时表优化 | ❌ | ✅ | --- ### 总结 MySQL底层核心原理围绕**B+树索引优化**(减少磁盘IO)、**MVCC机制**(提升并发性能)、**日志系统协同**(保证数据安全)展开。通过存储引擎层的精细设计,InnoDB在事务处理和高并发场景下展现优势[^1][^3]。 --相关问题-- 1. InnoDB的Change Buffer如何优化写操作性能? 2. 如何通过调整`innodb_flush_log_at_trx_commit`平衡性能与数据安全? 3. MySQL的Hash索引与B+树索引有何本质区别? 4. 在RR隔离级别下,如何通过Next-Key Lock解决问题?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会飞的IT蜗牛

更美口味,打赏人生

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值