常见的非线性映射

本文详细介绍了几种常见的非线性映射函数在深度学习中的应用,包括sigmoid、tanh、ReLU、ELU和Maxout。这些函数作为神经网络的激活层,对于模型的表达能力和学习能力至关重要。例如,ReLU在卷积神经网络中广泛应用,而ELU则在避免梯度消失问题上有所改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.sigmoid

函数 

实现代码:

def sigmoid(x):
    return (1 / (1 + np.exp(-x)))

图像:

2.tanh(双曲正切)

函数 

实现 numpy自带np.tanh(),自己写和sigmoid类似套公式就行了

图像:

3.Relu 修正线性单元

卷积神经网络 激励层用的比较多

函数:f(x) = x (x > 0)  f(x) = 0  (x <= 0)

图像:

变化后的leaky ReLU

<think>好的,我现在需要处理用户关于非线性映射的微分问题。用户提到了数学原理和编程实现,所以我得先理解非线性映射的微分是什么,然后考虑如何解释其原理和实现方法。 首先,非线性映射指的是像$f(x)=x^2$这样的函数,不满足线性叠加性质。微分在这里应该是指求导数或梯度,因为对于映射的局部线性近似,微分是关键。数学上,微分可以通过求导法则来处理,比如链式法则、乘积法则等。对于标量函数,导数就是梯度;如果是向量函数,可能需要雅可比矩阵。 然后编程实现方面,用户可能想知道如何用代码计算非线性映射的微分。自动微分和符号微分是常见的方法。比如在Python中,可以用SymPy进行符号微分,或者使用TensorFlow、PyTorch的自动微分功能。需要举例子,比如实现$f(x)=x^3 + \sin(x)$的微分,并展示代码。 接下来要参考用户提供的引用。引用[1]提到非线性映射的例子$f(x)=x^2$,以及线性性质不满足的情况。引用[3]讨论了线性和非线性的区别,特别是整体不等于部分之和的情况,这可能和微分后的行为有关,比如微分后的函数是否保持线性叠加。引用[5]提到牛顿法求解方程,这涉及到使用导数进行迭代,可能需要联系到微分在数值方法中的应用。 需要注意用户的问题是关于微分在非线性映射中的原理和实现,所以需要将微分的作用解释清楚,例如局部线性化、泰勒展开等。同时,结合编程示例,比如用数值方法(有限差分)或者自动微分来实现。 可能还需要比较符号微分和自动微分的区别,以及它们适用的场景。例如,符号微分适合简单函数得到精确表达式,而自动微分适合复杂模型的高效计算。 最后,生成相关问题时要围绕微分在非线性映射中的应用、方法比较、数值方法中的角色,以及实际应用场景。确保问题有针对性,能够引导进一步学习。</think>### 非线性映射的微分原理与实现 #### 一、数学原理 1. **微分定义** 非线性映射$f: \mathbb{R}^n \to \mathbb{R}^m$的微分本质是**局部线性近似**。对于标量函数$f(x)$,其导数$f'(x)$通过泰勒展开定义: $$ f(x + \Delta x) \approx f(x) + f'(x)\Delta x + o(\Delta x) $$ 对于向量函数,微分对应**雅可比矩阵**$J_f$,其元素为$J_{ij} = \frac{\partial f_i}{\partial x_j}$[^1][^3]。 2. **非线性特性与微分关系** 非线性映射的微分可能具有以下特点: - **非全局性**:导数随输入值变化(如$f(x)=x^3$的导数$f'(x)=3x^2$) - **交互作用**:变量间存在耦合(如$f(x,y)=xy$的偏导数$\frac{\partial f}{\partial x}=y$) - **高阶效应**:需通过高阶导数描述曲率变化(如Hessian矩阵) #### 二、编程实现方法 ##### 1. 符号微分(SymPy示例) ```python from sympy import symbols, diff, sin x = symbols('x') f = x**3 + sin(x) df = diff(f, x) # 输出: 3x² + cos(x) ``` ##### 2. 自动微分(PyTorch示例) ```python import torch x = torch.tensor(2.0, requires_grad=True) y = x**3 + torch.sin(x) y.backward() print(x.grad) # 输出: 3*(2)^2 + cos(2) ≈ 12.4161 ``` ##### 3. 数值微分(有限差分法) ```python def numerical_diff(f, x, h=1e-5): return (f(x+h) - f(x-h)) / (2*h) print(numerical_diff(lambda x: x**3 + np.sin(x), 2.0)) # ≈12.4161 ``` #### 三、关键差异对比 | 方法 | 精度 | 计算效率 | 适用场景 | |------------|----------|----------|------------------------| | 符号微分 | 精确 | 低 | 简单函数、理论推导 | | 自动微分 | 精确 | 高 | 深度学习、复杂计算图 | | 数值微分 | 近似 | 中 | 快速验证、黑盒函数 | #### 四、典型应用场景 1. **物理建模**:非线性微分方程的雅可比矩阵求解[^5] 2. **优化算法**:牛顿法中使用Hessian矩阵加速收敛[^5] 3. **神经网络**:反向传播依赖自动微分计算梯度[^4] ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值