DiffusionDrive:端到端自动驾驶的截断扩散模型

24 年 11 月来自华中理工和地平线的论文“DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving”。

扩散模型已成为机器人策略学习的强大生成技术,能够对多模式动作分布进行建模。利用其能力实现端到端自动驾驶是一个很有前途的方向。然而,机器人扩散策略中的众多去噪步骤以及交通场景更具动态性和开放性,对实时生成多样化驾驶动作构成巨大挑战。为了应对这些挑战,提出了一种截断扩散策略 DiffusionDrive,该策略结合了先前的多模式锚点并截断扩散调度,使模型能够学习从锚定高斯分布到多模式驾驶动作分布的去噪过程。此外,设计一个高效的级联扩散解码器,增强与条件场景上下文的交互。与普通扩散策略相比,该模型 DiffusionDrive 将去噪步减少 10 倍,仅需 2 步即可提供卓越的多样性和质量。在面向规划的 NAVSIM 数据集上,借助对齐的 ResNet- 34 主干,DiffusionDrive 无需花哨考虑即可实现 88.1 PDMS,同时在 NVIDIA 4090 上以 45 FPS 的实时速度运行。在具有挑战性的场景中的定性结果进一步证实,DiffusionDrive 可以稳健地生成各种合理的驾驶行为。

如图所示不同端到端范式的比较。(a)单模回归 [6, 13, 17]。(b)从词汇表中抽样 [3, 22]。(c)原始扩散策略 [5, 16]。(d)提出的截断扩散策略。

请添加图片描述

近年来,端到端自动驾驶因感知模型(检测 [14, 21, 35]、跟踪 [45–47]、在线地图 [24, 25, 27] 等)的进步而备受关注,这些模型直接从原始传感器输入中学习驾驶策略。这种数据驱动的方法为传统的基于规则运动规划提供了一种可扩展且强大的替代方案,而传统的基于规则运动规划通常难以推广到复杂的现实世界驾驶环境。

为了有效地从数据中学习,主流的端到端规划器(例如 Transfuser [6]、UniAD [13]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值