计算方法——C语言实现——全主元高斯消元法求解非线性方程

本文介绍了一种使用C语言实现的全主元高斯消元法求解线性方程组的方法。该方法通过每次选择绝对值最大的元素作为主元,以减少舍入误差和失真,提高计算精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在上计算方法这门课,要求是用MATLAB做练习题,但是我觉得C语言也很棒棒啊~

题目:

题
高斯消元法是线性方程组的直接解法,可能会造成很大的失真,尤其是高斯顺序消元法,对方法进行改进,使每次都选取绝对值最大的元素为主元,使其为乘数的分母,控制舍入误差的扩大,失真较小。代码都是上上个星期写的,暂时就不注释了……
使用VS2017,代码如下:

//使用全主元高斯消元法求解线性方程组
#include "stdafx.h"
#include<stdlib.h>
#include "math.h"

double **A, *b, *x;
unsigned int *x_number;
unsigned int RANK = 4;
unsigned int makematrix()
{
	unsigned int r, c;

	printf("请输入矩阵行列数,用空格隔开:");
	scanf_s("%d %d", &r, &c);

	A = (double**)malloc(sizeof(double*)*r);//创建一个指针数组,把指针数组的地址赋值给a ,*r是乘以r的意思
	for (int i = 0; i < r; i++)
		A[i] = (double*)malloc(sizeof(double)*c);//给第二维分配空间
	for (int i = 0; i < r; i++) {
		for (int j = 0; j < c; j++)
			A[i][j] = 0.0;
	}

	b = (double*)malloc(sizeof(double)*r);
	for (int i = 0; i < r; i++)
	{
		b[i] = 0.0;
	}
	x = (double*)malloc(sizeof(double)*c);
	for (int i = 0; i < c; i++)
	{
		x[i] = 0.0;
	}
	x_number = (unsigned int*)malloc(sizeof(unsigned int)*c);
	for (int i = 0; i < c; i++)
	{
		x_number[i] = i + 1;
	}

	return r;
}

void getmatrix(void)//输入矩阵并呈现
{
	printf("请按行从左到右依次输入系数矩阵A,不同元素用空格隔开\n");
	for (int i = 0; i < RANK; i++)
	{
		for (int j = 0; j<RANK; j++)
		{
			scanf_s("%lf", &A[i][j]);
		}
	}
	printf("系数矩阵如下\n");
	for (int i = 0; i < RANK; i++)
	{
		for (int j = 0; j<RANK; j++)
		{
			printf("%g\t", A[i][j]);
		}
		printf("\n");
	}
	printf("请按从上到下依次输入常数列b,不同元素用空格隔开\n");
	for (int i = 0; i<RANK; i++)
	{
		scanf_s("%lf", &b[i]);
	}
	printf("常数列如下\n");
	for (int i = 0; i<RANK; i++)
	{
		printf("%g\t", b[i]);
	}printf("\n");
}

void exchange_matrix(unsigned int n,double **AA,double *bb, unsigned int *xx)  //n为从第几行(列)开始,AA为系数矩阵,bb为常数列
{
	double get_max = 0.0;
	unsigned int get_max_i, get_max_j;

	get_max_i  = n - 1;
	get_max_j = n - 1;
	for (int i = n-1; i < RANK; i++)
	{
		for (int j = n-1; j<RANK; j++)
		{
			if (fabs(AA[i][j]) > fabs(get_max))
			{
				get_max = AA[i][j];
				get_max_i = i;
				get_max_j= j;				
			}
		}
	}

	if (get_max_i != n - 1)//交换行
	{
		double *temp, temp2;
		temp = AA[get_max_i];
		AA[get_max_i] = AA[n - 1];
		AA[n - 1] = temp;

		temp2 = bb[get_max_i];
		bb[get_max_i] = bb[n - 1];
		bb[n - 1] = temp2;
	}
	if (get_max_j != n - 1)//交换列
	{
		double temp;
		unsigned int temp2;
		for (int i = 0; i < RANK; i++)//系数
		{
			temp = AA[i][get_max_j];
			AA[i][get_max_j] = AA[i][n - 1];
			AA[i][n - 1] = temp;
		}

			temp2 = xx[get_max_j];//x下标
			xx[get_max_j] = xx[n - 1];
			xx[n - 1] = temp2;
	}

	printf("第%d此换序后矩阵如下\n",n);
	for (int i = 0; i < RANK; i++)
	{
		for (int j = 0; j<RANK; j++)
		{
			printf("%g\t", AA[i][j]);
		}
		printf("    %g", bb[i]);
		printf("\n");
	}
}

void Gauss_calculation(void)//Gauss全主元消去法解线性方程组
{
	double get_A = 0.0;
	printf("利用以上A与b组成的增广阵进行全主元高斯消去法计算方程组\n");
	for (int i = 1; i < RANK; i++)
	{
		exchange_matrix(i, A, b,x_number);//换序
		for (int j = i; j<RANK; j++)
		{
			get_A = A[j][i - 1] / A[i - 1][i - 1];
			b[j] = b[j] - get_A * b[i - 1];
			for (int k = i - 1; k < RANK; k++)
			{
				A[j][k] = A[j][k] - get_A * A[i - 1][k];
			}
		}
	}
	printf("消元后的上三角系数增广矩阵如下\n");
	for (int i = 0; i < RANK; i++)
	{
		for (int j = 0; j<RANK; j++)
		{
			printf("%g\t", A[i][j]);
		}
		printf("    %g", b[i]);
		printf("\n");
	}
	printf("利用回代法求解上三角方程组,解得:\n");

	for (int i = 0; i < RANK; i++)
	{
		double get_x = 0.0;
		for (int j = 0; j < RANK; j++)
		{
			get_x = get_x + A[RANK - 1 - i][j] * x[j];//把左边全部加起来了,下面需要多减去一次Xn*Ann
		}
		x[RANK - 1 - i] = (b[RANK - 1 - i] - get_x + A[RANK - 1 - i][RANK - 1 - i] * x[RANK - 1 - i]) / A[RANK - 1 - i][RANK - 1 - i];
	}
	for (int i = 0; i < RANK; i++)
	{
		printf("x%d = %g\n", x_number[i], x[i]);
	}
	printf("计算完成,按回车退出程序或按1重新输入矩阵\n");
}

int main()
{

_again:
	RANK = makematrix();
	getmatrix();
	Gauss_calculation();

	getchar();
	if ('1' == getchar())
		goto _again;
	return 0;
}

按设计的提示老老实实 输入题目的系数矩阵和常数向量后,得到运行结果:
在这里插入图片描述在这里插入图片描述
一般来说直接求法是很快的,但是一般来说只用在不大的方程组上,因为失真会不断被放大,那就很扎心了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值