面了美团大模型算法岗,问的贼细。。。

最近这一两周看到不少互联网公司都已经开始秋招提前批了。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全整理的大模型大厂真实面经》,扫码获取~
在这里插入图片描述

今天分享我们一星球成员面试美团大模型面经:

一面

  • 文档大模型是一个独立的模型,会整合到一个大模型还是分离式的

  • 目前用的多大的模型

  • 是一个什么结构,对结构的一些了解 flamingo或者blip2的结构上的对比

  • 足够资源的情况下,哪个结构是最优的

  • 分辨率是如何解决的,文档的分辨率比较高

  • QA对匮乏如何解决的

  • ocr的性能目前是低于多模态大模型

  • 如何解决bbox感知力差的问题

  • 充足的算力,数据如何获取,如何有效的清洗

  • fuyu这种结构有什么优化的空间

  • 简单介绍下Transformer

  • 大概讲一下Transformer的Encoder模块?

  • 为什么transformer块使用LayerNorm而不是BatchNorm?

  • Transformer为何使用多头注意力机制?

算法题:手写multi-head attention;寻找两个正序数组的中位数 (LeetCode 4);只出现一次的数字 III (LeetCode 260)

二面

  • 请描述BERT的微调过程及其重要性

  • 解释什么是自注意力机制,以及它在BERT模型中的作用。

  • BERT与其它预训练模型(如GPT)有什么不同?

  • 如何评估BERT模型在特定NLP任务上的性能?

  • 如何解决BERT训练中的过拟合问题?

  • OCR文档大模型

  • Instruction tuning的决定性因素,哪些Instruction tuning策略效果更好,如何评估复杂度的性能

  • 如何保证数据集的多样性和复杂度

  • 分层的Instruction tuning数量的影响,数量和质量

  • 不同类型数据的影响,对下游任务的影响,自动化的数据配比,自动化的指标去做类似的事情

  • 专门优化的指标不再是一个好的指标

  • 使用其他的指标来引导模型的优化,而不是使用下游的指标,LLM使用的loss,作为指标,而不是benchmark的分数

  • 合理的评估指标是什么,openAI的压缩理论,training loss代表优化目标

  • AGI的几个阶段,deepmind发表

算法题:根据字符出现频率排序 (LeetCode 451); 只出现一次的数字 (LeetCode 136)

(完)

### 美团大模型在智能客服中的实现方案和技术美团的大规模预训练模型结合了多种先进技术,在智能客服领域实现了高效的服务响应和用户体验优化。以下是具体的技术实现方式: #### 1. 预估框架 Augur 的作用 为了应对日益复杂的模型需求以及高效的特征迭代,美团技术团队设计并实施了一个名为 **Augur** 的在线预估框架[^1]。该框架能够显著减少算法团队的开发成本,并加速模型与特征的更新频率。通过这一框架的支持,智能客服系统的性能得以持续改进。 #### 2. 基于 RAG 的检索增强机制 智能客服系统采用了 **RAG(Retrieval-Augmented Generation)** 技术作为核心之一[^4]。这种技术融合了信息检索和生成模型的优势,能够在对用户提时快速从大规模知识库中提取相关上下文信息,并将其用于后续的回答生成过程。这种方式不仅提高了回答的准确性,还增强了系统的泛化能力。 #### 3. 使用更大的预训练模型 除了基础架构外,实际应用中还会引入更大、更强的预训练模型来进一步提升效果[^2]。这些大型语言模型经过充分的数据积累和参数调整后,可以更好地理解自然语言语义,从而提供更加贴近人类思维模式的答案。 #### 4. Soft Prompt 调整策略 针对特定场景下的定制化需求,则可以通过软提示(soft prompt)的方法来进行针对性处理[^3]。这种方法允许开发者灵活定义输入序列结构,使得模型可以根据不同类型的请求做出相应变化,进而提高整体服务质量。 #### 5. 致入微的调优工作 最后值得一提的是,在整个项目推进过程中少不了反复试验与不断优化环节。通过对各个组成部分进行全评估分析找出潜在瓶颈所在之处加以改善直至达到预期目标为止。 ```python # 示例代码展示如何加载预训练模型并与RAG集成 from transformers import RagTokenizer, RagTokenForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq") def generate_response(question): input_ids = tokenizer.encode(question, return_tensors="pt") generated = model.generate(input_ids) response = tokenizer.decode(generated[0], skip_special_tokens=True) return response question = "What is the capital of France?" response = generate_response(question) print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值