学大模型先懂它!智能体开发指南:什么是 AI Agent(AI 智能体)?

一、解析AI智能体:定义与核心构成

AI智能体(AI Agent)并非单一工具,而是一套为大型语言模型(LLM)赋能的综合系统。它通过接入外部工具、整合多源知识,突破LLM仅能生成文本的局限,使其具备执行复杂任务的能力,例如自动完成旅行预订、智能处理客户投诉等实际场景。

要深入理解AI智能体,我们可将其核心构成拆解为以下关键模块,每个模块在系统中承担着不可或缺的角色:

系统架构:AI智能体的本质是“组件集合体”,而非独立个体。一个基础的智能体系统至少包含三大核心组件,三者协同实现任务闭环:

  • 运行环境(Environment):智能体执行任务的“物理空间”,是其与外部世界交互的载体。以旅行预订智能体为例,其运行环境就是旅行预订平台——包含航班查询、酒店筛选、订单生成等功能的数字化系统,所有操作都需在该环境内完成。
  • 信息传感器(Sensors):智能体的“感知器官”,负责收集并解析运行环境中的实时信息,为决策提供依据。在旅行预订场景中,传感器可实时抓取酒店房间余量(如“三亚某酒店海景房仅剩2间”)、航班价格波动(如“北京至上海航班明日起涨价30%”)、用户行程冲突提示(如“预订的航班与高铁时间重叠”)等关键数据。
  • 动作执行器(Actuators):智能体的“执行器官”,根据传感器收集的信息和自身决策逻辑,发起改变环境状态的动作。例如,当用户确认预订需求后,执行器会自动完成“锁定酒店房间”“生成航班订单”“发送确认短信”等一系列操作,将环境从“待预订状态”转为“已预订状态”。

什么是人工智能代理?

  • 核心驱动:大型语言模型(LLM):尽管“智能体”的概念早于LLM出现,但LLM的诞生让智能体的能力实现了质的飞跃。LLM的核心价值在于自然语言理解与逻辑推理能力——它能读懂用户模糊的需求(如“帮我订一个下周去广州的性价比高的行程”),也能解析环境中的复杂信息(如对比不同航班的起降时间、中转次数、行李额度),并据此制定清晰的任务执行计划,而非机械遵循固定指令。

  • 核心能力:自主执行任务:脱离智能体系统的LLM,本质是“文本生成器”,只能根据用户提示输出信息(如“列出广州的热门景点”);而嵌入智能体系统后,LLM成为“任务执行者”——它能将用户需求拆解为具体步骤(如“先查下周北京至广州的航班→筛选价格低于800元的直飞航班→匹配市中心性价比酒店→生成行程单”),并调用工具逐步完成。

  • 能力扩展:工具接入机制:LLM可使用的工具并非无限制,而是由两大因素决定:一是运行环境的功能边界(如旅行预订平台仅提供航班、酒店预订工具,无法调用银行转账工具);二是开发者的权限配置(如为避免超额消费,开发者可限制智能体仅能预订单价低于2000元的酒店,或仅能选择经济舱航班)。

  • 智能升级:记忆与知识融合:智能体的“智能”不仅体现在实时决策,更在于“经验积累”。其记忆与知识体系分为两层:短期层面,能记住当前对话中的关键信息(如用户提到“偏好靠窗的航班”“不接受凌晨起飞的飞机”);长期层面,可对接外部数据库(如用户历史预订记录、会员等级权益、旅行偏好标签),甚至跨系统获取知识(如从天气API获取目的地未来一周天气,从旅游攻略平台获取热门美食推荐)。例如,当用户再次使用旅行预订智能体时,它能直接调取历史数据,优先推荐用户过往喜欢的酒店品牌或航班时段。

二、AI智能体的常见类型与旅行场景应用

基于不同的决策逻辑和功能定位,AI智能体可分为多种类型。结合旅行预订场景,我们能更直观地理解各类智能体的差异与适用范围:

智能体类型核心工作逻辑旅行场景应用示例
简单型智能体遵循预设规则,触发特定动作,无自主决策能力当用户发送“旅行投诉”类邮件时,智能体自动识别邮件关键词(如“航班延误”“酒店卫生差”),并将邮件转发至对应客服部门(如航班投诉→航空客服组,酒店问题→住宿客服组)。
基于模型的智能体依托“世界模型”(如历史数据、规律模型),预测环境变化并调整动作智能体通过分析过去3年“春节前一周北京至三亚”的航班价格数据,发现“提前15天预订价格最低,临近3天价格上涨超50%”的规律,当监测到当前距离春节还有15天时,主动提醒用户“建议今日完成预订,避免后续涨价”。
基于目标的智能体明确用户目标后,自主拆解任务步骤并执行用户提出“帮我订1月20日从上海到成都的3天行程”,智能体先拆解目标为“订机票→订酒店→规划每日行程”,再依次执行:筛选1月20日上海至成都的直飞航班(优先选择早班机)→匹配市中心靠近景点的三星级酒店(价格控制在500元/晚以内)→结合成都景点分布,生成“Day1:宽窄巷子+锦里;Day2:都江堰;Day3:春熙路+大熊猫繁育研究基地”的行程单。
基于实用程序的智能体综合用户偏好与成本、效率等因素,权衡最优方案用户需求为“订上海至北京的航班,希望性价比高且不耽误下午工作”,智能体对比选项:A航班(早8点起飞,票价600元,9点30分到达,需早起但不影响工作);B航班(中午12点起飞,票价800元,13点30分到达,无需早起但票价高)。最终结合“性价比优先”的偏好,推荐A航班,并说明“虽需早起,但能节省200元且不影响下午工作”。
学习智能体接收用户反馈或环境数据,持续优化决策逻辑旅行结束后,用户通过调查反馈“此次预订的酒店距离地铁站太远,出行不便”,智能体将该反馈存入用户偏好数据库,下次为该用户预订酒店时,自动增加“距离地铁站500米以内”的筛选条件,避免同类问题重复出现。
分层智能体采用“上层统筹+下层执行”的分层架构,复杂任务拆解为子任务用户提出“取消1月20日上海至成都的行程”,上层智能体先拆解任务为“取消航班→取消酒店→发送取消确认短信”,再将子任务分配给下层专用智能体:航班取消智能体负责联系航司办理退款,酒店取消智能体负责与酒店沟通免手续费取消,通知智能体负责发送包含退款进度的短信,最终由上层智能体汇总结果并告知用户。
多智能体系统(MAS)多个独立智能体协同或竞争,共同完成复杂任务- 协同场景:旅行平台的“行程打包智能体”“航班预订智能体”“酒店预订智能体”“门票预订智能体”协同工作——行程打包智能体确定用户需求后,分别调用航班、酒店、门票智能体完成各自任务,最终整合为完整行程包。
- 竞争场景:多家酒店的“房源管理智能体”共享同一旅行平台的预订日历,当用户搜索“成都春熙路酒店”时,各智能体通过调整价格(如降价50元)、释放限时优惠(如“连住2晚送早餐”)等方式竞争用户订单,争取将自家房源预订出去。

三、AI智能体的适用场景:哪些任务适合用智能体?

在旅行预订场景中,我们已初步见识了智能体的价值。从更广泛的视角来看,AI智能体尤其适合处理以下三类任务,其优势在这些场景中能得到最大化发挥:

何时使用 AI 代理?

  • 开放式任务:无固定流程,需灵活决策
    这类任务无法通过“硬编码”预设所有步骤,需要智能体根据实时情况自主判断。例如,用户提出“帮我规划一个适合带老人的云南7天游”——老人的身体状况(如是否能爬山)、出行季节(如是否避开雨季)、预算范围(如是否选择高端酒店)等变量都会影响行程设计,智能体需先通过对话确认这些信息,再结合云南景点分布、交通便利性等因素动态调整计划,而非套用固定模板。

  • 多步骤任务:需跨环节协作,依赖持续交互
    这类任务包含多个连续环节,且前一环节的结果会影响后一环节的决策,需要智能体持续与环境、用户交互。例如,“跨国旅行签证办理+行程预订”任务:智能体需先查询用户目的地国家的签证要求(如是否需要在职证明、核酸检测报告)→提醒用户准备材料→跟踪签证办理进度→待签证通过后,再预订航班、酒店→最后发送行前提醒(如时差、当地习俗)。整个过程需跨越多个环节,且每个环节都需等待前一步完成,智能体可全程自动化跟进,无需用户手动衔接。

  • 迭代优化任务:需接收反馈,持续提升效果
    这类任务的目标不是“一次性完成”,而是“通过反馈不断优化”,逐步贴近用户需求。例如,“旅行推荐智能体”——首次推荐时,可能因不了解用户偏好推荐偏商业化的景点;用户反馈“更想体验小众本地文化”后,智能体可调整推荐逻辑,下次优先推荐本地市集、非遗工坊等场景;若用户进一步反馈“希望推荐适合拍照的小众景点”,智能体可继续优化筛选条件,逐步让推荐结果更精准。这种“反馈-优化”的循环,是传统工具难以实现的,而智能体可通过记忆用户反馈,持续迭代决策逻辑。

关于智能体的使用,还需考虑安全性(如用户支付信息保护)、可解释性(如为何推荐某一航班)等问题,这些内容将在“构建可信赖的智能体”课程中进一步展开。

四、AI智能体解决方案:开发、模式与框架

要落地一个AI智能体,需从“开发流程”“交互模式”“技术框架”三个维度搭建解决方案。以下将结合实际工具与案例,解析智能体的实现路径。

(一)智能体开发:从需求到落地的第一步

开发智能体的核心起点,是明确“工具、动作、行为”的边界——即智能体需要哪些工具、能执行哪些动作、遵循怎样的行为规则。以旅行预订智能体为例,工具可能包括“航班查询API”“酒店预订接口”“用户偏好数据库”;动作可能包括“调用API查询航班”“发送预订请求”“读取用户历史数据”;行为规则可能包括“仅在用户确认后发起预订”“若价格超过用户预算需提前提醒”。

在实际开发中,借助云服务商提供的智能体服务可大幅降低门槛。例如Azure AI Agent服务,其核心优势在于提供“开箱即用”的能力,无需从零构建底层架构:

  • 多模型支持:可灵活接入OpenAI(如GPT-4o)、Mistral、Llama等主流LLM,开发者可根据任务需求(如成本、精度)选择合适的模型——例如,简单的投诉分类任务可选择轻量化的Llama 3,复杂的行程规划任务可选择GPT-4o。
  • 许可数据接入:可直接对接第三方许可数据,无需担心版权问题。例如,旅行场景中可接入Tripadvisor的酒店评分数据、航司的实时航班数据,无需自行爬取或谈判数据授权。
  • 标准化工具集成:支持通过OpenAPI 3.0规范接入工具,无论是航班查询API、支付接口还是天气服务,只要符合OpenAPI标准,均可快速集成到智能体系统中,降低工具对接的技术成本。

(二)智能体模式:实现半自主交互的核心

与LLM的交互通常依赖“单次提示词”(如用户输入“帮我查上海至北京的航班”,LLM输出结果),但智能体的半自主性要求“多轮交互无需手动重新提示”——这就需要通过“智能体模式”实现。

智能体模式的本质,是预设“触发条件-执行动作”的逻辑,让智能体在环境变化时自动发起交互,而非依赖用户手动输入。例如,旅行预订智能体的“价格监控模式”:当用户设置“上海至北京航班价格低于700元时提醒”后,智能体可自动定时调用航班查询API(如每小时查询一次),若监测到价格达标,无需用户再次提示,自动发送短信提醒。这种模式让智能体从“被动响应”转为“主动服务”,大幅提升交互效率。

本课程将围绕当前主流的智能体模式展开,包括“反射式模式”(如简单型智能体的规则触发)、“规划式模式”(如基于目标的智能体的任务拆解)、“协作式模式”(如多智能体系统的协同工作)等,帮助开发者根据场景选择合适的交互逻辑。

(三)智能体框架:提升开发效率与可维护性

智能体框架是开发者的“工具箱”,提供模板、插件、调试工具等,解决“重复开发”“难以排查问题”等痛点。优秀的框架不仅能加速开发,还能提升系统的可观察性(如跟踪智能体的决策过程)和可扩展性(如新增工具时无需重构代码)。

目前主流的智能体框架可分为两类:

  • 研究型框架:以探索智能体新能力为目标,如微软的AutoGen。AutoGen的核心优势在于支持“多智能体协同编程”,可让多个智能体(如“任务规划智能体”“代码生成智能体”“结果验证智能体”)协同完成复杂任务,适合科研场景或复杂任务的原型开发。
  • 生产型框架:以稳定性、可维护性为目标,如Semantic Kernel。Semantic Kernel提供标准化的插件体系、日志跟踪工具、错误处理机制,可直接用于企业级智能体开发,例如旅行平台的预订智能体、客服智能体等。

五、示例代码——创建你的第一个AI Agent

在这个示例代码中,我们会使用Sematic Kernel作为AI框架来创建一个AI Agent。在执行代码之前,你可能需要准备一下环境。我会选择使用免费的github模型来跑这个示例代码,具体步骤可以参考:

https://github.com/microsoft/ai-agents-for-beginners/blob/main/00-course-setup/README.md

github

1. Import所需的Python库

import os 
from typing import Annotated
from openai import AsyncOpenAI
from dotenv import load_dotenv
from semantic_kernel.agents import ChatCompletionAgent, ChatHistoryAgentThread
from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion
from semantic_kernel.functions import kernel_function

2. 创建一个访问LLM的client


import random   
# Define a sample plugin for the sample
class DestinationsPlugin:
    """A List of Random Destinations for a vacation."""
    def __init__(self):
        # List of vacation destinations
        self.destinations = [
            "Barcelona, Spain",
            "Paris, France",
            "Berlin, Germany",
            "Tokyo, Japan",
            "Sydney, Australia",
            "New York, USA",
            "Cairo, Egypt",
            "Cape Town, South Africa",
            "Rio de Janeiro, Brazil",
            "Bali, Indonesia"
        ]
        # Track last destination to avoid repeats
        self.last_destination = None
    @kernel_function(description="Provides a random vacation destination.")
    def get_random_destination(self) -> Annotated[str, "Returns a random vacation destination."]:
        # Get available destinations (excluding last one if possible)
        available_destinations = self.destinations.copy()
        if self.last_destination and len(available_destinations) > 1:
            available_destinations.remove(self.last_destination)
        # Select a random destination
        destination = random.choice(available_destinations)
        # Update the last destination
        self.last_destination = destination
        return destination

load_dotenv()
client = AsyncOpenAI(
    api_key=os.environ.get("GITHUB_TOKEN"), 
    base_url="https://models.inference.ai.azure.com/",
)
# Create an AI Service that will be used by the `ChatCompletionAgent`
chat_completion_service = OpenAIChatCompletion(
    ai_model_id="gpt-4o-mini",
    async_client=client,
)

3. 创建一个Agent

我们创建一个名字是travel agent的智能体。你可以尝试修改里面的instruction参数。


agent = ChatCompletionAgent(
    service=chat_completion_service, 
    plugins=[DestinationsPlugin()],
    name="TravelAgent",
    instructions="You are a helpful AI Agent that can help plan vacations for customers at random destinations",
)

4. 运行Agent

现在可以运行这个agent,这里定义用户的输入是Plan me a day trip(请给我计划一个一天的旅行),你可以随意更改这个input。


async def main():
    # Create a new thread for the agent
    # If no thread is provided, a new thread will be
    # created and returned with the initial response
    thread: ChatHistoryAgentThread | None = None
    user_inputs = [
        "Plan me a day trip.",
    ]
    for user_input in user_inputs:
        print(f"# User: {user_input}\n")
        first_chunk = True
        async for response in agent.invoke_stream(
            messages=user_input, thread=thread,
        ):
            # 5. Print the response
            if first_chunk:
                print(f"# {response.name}: ", end="", flush=True)
                first_chunk = False
            print(f"{response}", end="", flush=True)
            thread = response.thread
        print()
    # Clean up the thread
    await thread.delete() if thread else None
await main()

可以看到,这个agent已经有所输出,给出一个一日旅游的方案。

img

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

为什么要学习大模型?

我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。

在这里插入图片描述

在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值