文章对比了三种AI代理通信协议:Anthropic的MCP(模型与工具/数据互联)、Google的A2A(代理间通信标准化)和AGNTCY联盟(构建代理互联网基础设施)。MCP解决模型与工具集成的M×N问题,A2A实现代理间直接通信,AGNTCY则致力于构建完整的代理互联网。三者各有优势:MCP最实用且率先普及,A2A在多代理协作中必不可少,AGNTCY潜力最大但挑战也最大。这场标准之争将决定未来AI基础设施格局。
如果你正在阅读这篇文章,你一定已经感受到,人工智能的世界正在发生巨大的迁移——从早期的单体大模型,逐渐走向互联互通的 专业化代理系统。
这种趋势几乎不可逆。单一模型已经无法满足所有任务需求,而“代理”(Agent)——能够调用工具、与其他代理协作的自治智能体,正在接管新的舞台。它们可能负责客户服务、网络安全、金融风控、复杂数据分析,甚至自动化研发。未来的承诺是:前所未有的效率与自动化。
但理想与现实之间,隔着一道巨大的沟壑:如何让这些由不同厂商、不同框架、不同语言开发出来的代理,安全、有效地互通、协作、共享信息?
这正是 MCP、A2A 和 AGNTCY 三大生态的切入点。
- MCP(Model Context Protocol):Anthropic 主推,定位是“AI 的 USB-C”,核心目标是把模型接入外部工具和数据。
- A2A(Agent2Agent Protocol):Google 推出,定位是“代理之间的 HTTP”,专注于标准化代理之间的直接通信。
- AGNTCY:由 Cisco、LangChain 等推动的开源联盟,定位是“代理互联网的基础设施”,愿景远大,目标是构建一个类似 TCP/IP 的“代理互联网(IoA)”。
接下来,我们就从架构原理、核心能力、安全模型、生态前景四个角度,逐一剖析三者的异同。
一、MCP:工具与数据的“通用适配器”
MCP(Model Context Protocol)是由 Anthropic 提出并迅速走红的协议。很多人把它比作 USB-C 接口:统一、兼容、简洁。
为什么说它重要?因为过去我们遇到的最大痛点是 M×N 集成问题。
举个例子:假设有 5 个大模型(Claude、GPT、Gemini、Mistral、DeepSeek),需要接入 10 种工具(搜索、数据库、API、Excel、邮件……)。
如果没有标准协议,那就是 50 条集成链路,开发者要被累死。而 MCP 的目标,就是用一套统一协议,把复杂度降低为 M+N。
换句话说:
- 工具开发者只要遵循 MCP,就能一次适配所有支持 MCP 的模型。
- 模型厂商也只要遵循 MCP,就能直接接入所有 MCP 工具。
MCP 架构:MCP 使用 客户端 - 主机 - 服务器 三层架构:
- 主机(Host):核心控制层,比如 Claude Desktop、Cursor IDE。这是用户直面的“超级应用”。
- 客户端(Client):嵌入主机的轻量协议客户端,与 MCP 服务器保持隔离连接。
- 服务器(Server):暴露功能的独立进程(本地或远程),可以是数据库、API、日志服务……
核心原语包括:
- Tools(工具):模型可调用的函数或 API。
- Resources(资源):提供上下文的数据流,如文件、日志、数据库记录。
- Prompts(提示):模板化的任务指令或工作流。
这三大原语,把 调用、读取、执行 三类场景统一封装。
通信方式
- 本地:标准输入/输出(stdio)。
- 远程:HTTP + SSE(Server-Sent Events)。
这意味着开发者上手成本极低——几乎所有编程语言都能秒接。
安全性设计,MCP 的安全设计有几个关键点:
- 用户同意优先:调用资源或工具必须明确经过用户授权。
- 主机控制中心化:所有权限和生命周期由主机管理。
- 本地优先原则:默认服务器运行在本地,防止敏感数据泄漏。
- 传输安全:远程通信推荐使用 TLS。
- 输入验证与访问控制:强调防注入、防越权,建议结合 RBAC/ACL。
劣势也明显:MCP 的安全实现强依赖于“主机”应用。如果主机做得不严谨,可能会带来权限滥用、令牌盗窃、提示注入等风险。
二、A2A:代理之间的“HTTP”
如果说 MCP 是“模型对工具”的标准,那么 A2A 就是“代理对代理”的标准。
这是 Google 在 GitHub 上开源的一个协议,定位很清晰:
- MCP 解决 M×N 集成问题,
- A2A 解决代理互操作问题。
未来的世界是 多代理协作:
- A 医疗代理负责诊断,
- B 保险代理负责理赔,
- C 法律代理负责合规审核,
它们必须能互相沟通。
但现实是:
不同框架(LangGraph、CrewAI、Genkit)、不同供应商(Google、OpenAI、Anthropic)开发的代理,接口各不相同。
于是,A2A 出现了。
架构设计
A2A 基于 JSON-RPC 2.0(请求响应)+ SSE(流式更新)。
- 客户端(Client):发起请求的代理。
- 服务器(Server):暴露能力的代理。
- 代理卡(Agent Card):描述代理的身份、功能、认证方式,通常托管在
/.well-known/agent.json
,类似网站的robots.txt
。
它的任务(Task)有完整生命周期:
- submitted(已提交)
- working(处理中)
- input-required(需要输入)
- completed(完成)
- failed(失败)
- canceled(取消)
每个任务又由 Message(消息) 和 Artifact(工件) 组成,支持 文本、文件、结构化 JSON 等多模态数据。
这就像 HTTP 协议中的 请求-响应报文,把复杂的代理交互抽象成一套通用格式。
示例:恶意软件分析任务
A2A 的代码示例已经很清晰了:
- 用户(Client)上传恶意文件(FilePart)。
- 代理(Server)返回分析报告(Artifact),包含摘要、结构化 JSON、日志文件 URI。
这种模式天然适合 网络安全、医疗诊断、金融风控 等需要高频多代理协作的场景。
安全性设计
A2A 的安全策略非常“Web 原生”:
- 认证机制:支持 Bearer、API Key、OAuth2、OIDC。
- 加密:HTTPS(TLS)默认启用。
- 任务完整性:唯一 Task ID 防止混乱。
- 发现安全性:Agent Card 可以声明访问要求。
- 速率限制:支持令牌桶等机制,防止滥用。
可以看到,A2A 把成熟的互联网安全体系“移植”到了代理通信层。
三、AGNTCY:代理互联网的“TCP/IP 套件”
相比之下,AGNTCY 的愿景更加宏大。
如果说 MCP 是“USB-C”,A2A 是“HTTP”,那 AGNTCY 就是 TCP/IP+DNS 的集合,它想要构建的不是单一协议,而是一个 代理互联网(Internet of Agents, IoA)。
参与者包括 Cisco、LangChain、Galileo 等行业巨头,走的完全是 开源联盟模式。
架构与组件
AGNTCY 包含多个层次化协议和框架:
- ACP(Agent Connection Protocol)
- 类似 REST 的交互协议,定义调用、配置、输出流式传输、中断处理等。
- 提供 Python SDK。
- AGP(Agent Gateway Protocol)
- 基于 gRPC,支持请求/响应、双向流、Pub/Sub。
- 面向高性能代理通信,强调低延迟与安全。
- Agent Gateway
- 提供消息路由、安全转发、策略中介。
- 类似“代理路由器”。
- OASF(Open Agentic Schema Framework)
- 标准化元数据框架,用于描述代理能力、依赖、性能指标。
- 类似 API 的 schema + DNS 记录。
- Agent Directory
- 分布式服务,用于发现和注册代理。对标 DNS。
- Agent Workflow Server
- 工作流引擎,用于组合多个代理,公开统一接口。
换句话说,AGNTCY 想要打造的是一个 全栈式的代理互联网基础设施。
四、三者对比总结
为了直观对比 MCP、A2A 和 AGNTCY 的定位,我们做一个表格:
维度 | MCP | A2A | AGNTCY |
---|---|---|---|
主导者 | Anthropic | Cisco+LangChain 等联盟 | |
核心目标 | 模型与工具/数据互联 | 代理之间通信标准化 | 构建完整代理互联网基础设施 |
架构模式 | Host-Client-Server | Client-Server + Agent Card | 多协议套件(ACP、AGP、OASF、目录服务) |
原语/元素 | Tools、Resources、Prompts | Task、Message、Artifact | Agent Manifest、Schema、Gateway、Workflow |
通信协议 | stdio / HTTP+SSE | JSON-RPC + SSE | gRPC + REST + Pub/Sub |
安全模型 | 用户同意+主机控制 | OAuth2/OIDC+TLS | 策略路由+Schema 验证 |
应用场景 | 模型调用 API、数据源 | 多代理协作任务 | 代理发现、编排、跨域互操作 |
愿景高度 | “USB-C for AI” | “HTTP for Agents” | “TCP/IP for Agents” |
- MCP 会率先普及:
- 因为最贴近开发者痛点(工具调用)。
- IDE、智能助手最先落地。
- A2A 会在多代理协作爆发:
- 金融、医疗、网络安全等领域需要多代理配合。
- 类似 REST API 的定位,门槛低。
- AGNTCY 是终局愿景:
- 如果说 MCP 和 A2A 是点对点解决问题,AGNTCY 就是要建立新的“互联网”。
- 但它挑战极大:标准化、治理、性能、安全,缺一不可。
一句话总结:MCP 更像局部解决方案,A2A 是通信协议,而 AGNTCY 是全局操作系统。
我的观点
- 从开发者角度:MCP 最实用,短期内最值得学习。
- 从架构师角度:A2A 是必备,因为多代理场景不可避免。
- 从战略投资角度:AGNTCY 的潜力最大,但能否落地还要看生态联盟的执行力。
这场标准之争,很可能会像 TCP/IP vs OSI、USB vs FireWire、HTTP vs Gopher 一样,决定未来 10 年代理互联网的格局。
谁能统一生态,谁就能主导新一轮 AI 基础设施的红利。
最后抛给大家一个问题:
如果你只能选一个标准来押注,MCP、A2A、AGNTCY,你会选哪一个?
大模型未来如何发展?普通人能从中受益吗?
在科技日新月异的今天,大模型已经展现出了令人瞩目的能力,从编写代码到医疗诊断,再到自动驾驶,它们的应用领域日益广泛。那么,未来大模型将如何发展?普通人又能从中获得哪些益处呢?
通用人工智能(AGI)的曙光:未来,我们可能会见证通用人工智能(AGI)的出现,这是一种能够像人类一样思考的超级模型。它们有可能帮助人类解决气候变化、癌症等全球性难题。这样的发展将极大地推动科技进步,改善人类生活。
个人专属大模型的崛起:想象一下,未来的某一天,每个人的手机里都可能拥有一个私人AI助手。这个助手了解你的喜好,记得你的日程,甚至能模仿你的语气写邮件、回微信。这样的个性化服务将使我们的生活变得更加便捷。
脑机接口与大模型的融合:脑机接口技术的发展,使得大模型与人类的思维直接连接成为可能。未来,你可能只需戴上头盔,心中想到写一篇工作总结”,大模型就能将文字直接投影到屏幕上,实现真正的心想事成。
大模型的多领域应用:大模型就像一个超级智能的多面手,在各个领域都展现出了巨大的潜力和价值。随着技术的不断发展,相信未来大模型还会给我们带来更多的惊喜。赶紧把这篇文章分享给身边的朋友,一起感受大模型的魅力吧!
那么,如何学习AI大模型?
在一线互联网企业工作十余年里,我指导过不少同行后辈,帮助他们得到了学习和成长。我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑。因此,我坚持整理和分享各种AI大模型资料,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频。
学习阶段包括:
1.大模型系统设计
从大模型系统设计入手,讲解大模型的主要方法。包括模型架构、训练过程、优化策略等,让读者对大模型有一个全面的认识。
2.大模型提示词工程
通过大模型提示词工程,从Prompts角度入手,更好发挥模型的作用。包括提示词的构造、优化、应用等,让读者学会如何更好地利用大模型。
3.大模型平台应用开发
借助阿里云PAI平台,构建电商领域虚拟试衣系统。从需求分析、方案设计、到具体实现,详细讲解如何利用大模型构建实际应用。
4.大模型知识库应用开发
以LangChain框架为例,构建物流行业咨询智能问答系统。包括知识库的构建、问答系统的设计、到实际应用,让读者了解如何利用大模型构建智能问答系统。
5.大模型微调开发
借助以大健康、新零售、新媒体领域,构建适合当前领域的大模型。包括微调的方法、技巧、到实际应用,让读者学会如何针对特定领域进行大模型的微调。
6.SD多模态大模型
以SD多模态大模型为主,搭建文生图小程序案例。从模型选择、到小程序的设计、到实际应用,让读者了解如何利用大模型构建多模态应用。
7.大模型平台应用与开发
通过星火大模型、文心大模型等成熟大模型,构建大模型行业应用。包括行业需求分析、方案设计、到实际应用,让读者了解如何利用大模型构建行业应用。
学成之后的收获👈
• 全栈工程实现能力:通过学习,你将掌握从前端到后端,从产品经理到设计,再到数据分析等一系列技能,实现全方位的技术提升。
• 解决实际项目需求:在大数据时代,企业和机构面临海量数据处理的需求。掌握大模型应用开发技能,将使你能够更准确地分析数据,更有效地做出决策,更好地应对各种实际项目挑战。
• AI应用开发实战技能:你将学习如何基于大模型和企业数据开发AI应用,包括理论掌握、GPU算力运用、硬件知识、LangChain开发框架应用,以及项目实战经验。此外,你还将学会如何进行Fine-tuning垂直训练大模型,包括数据准备、数据蒸馏和大模型部署等一站式技能。
• 提升编码能力:大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握将提升你的编码能力和分析能力,使你能够编写更高质量的代码。
学习资源📚
- AI大模型学习路线图:为你提供清晰的学习路径,助你系统地掌握AI大模型知识。
- 100套AI大模型商业化落地方案:学习如何将AI大模型技术应用于实际商业场景,实现技术的商业化价值。
- 100集大模型视频教程:通过视频教程,你将更直观地学习大模型的技术细节和应用方法。
- 200本大模型PDF书籍:丰富的书籍资源,供你深入阅读和研究,拓宽你的知识视野。
- LLM面试题合集:准备面试,了解大模型领域的常见问题,提升你的面试通过率。
- AI产品经理资源合集:为你提供AI产品经理的实用资源,帮助你更好地管理和推广AI产品。
👉获取方式: 😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】