
吴恩达老师公开课
文章平均质量分 83
Masec
半路出家,迎战C++
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【学习笔记】吴恩达老师《深度学习工程师》二
第三课 为什么深度学习会崛起老师解释了为什么深度学习这个几十年之前就出现的技术今天又火热起来。原因不外乎三点:1. 数据越来越庞大得益于数字化的发展、互联网的扩张以及各种廉价的视觉传感器的出现,如今的数据方便收集同时数量庞大,这为深度学习数据来源打下了扎实的基础。2. 计算机硬件的发展计算机硬件飞速发展,计算能力显著提高,使得以前很难进行计算的方法如今可以轻松实现。3. 算法的进步算法不断迭代,使...原创 2018-04-09 22:30:25 · 265 阅读 · 0 评论 -
【学习笔记】吴恩达老师《深度学习工程师》三
二周目课程第一课 二分分类二分类问题,说白了就是结果只有两种可能。老师以识别图像中是否为猫作为举例,首先讲解了神经网络中常用的符号规定。当给我们一幅图:我们需要得到的结果是,图片中是否是猫呢?显然结果仅有两种:是(1)和不是(0)。那么神经网络是如何处理图片呢?图片由三种颜色(三个通道)组成,RGB,如果这幅图是64*64像素,那么它在计算机中结果如下:每一个数字代表了像素的亮度(就和画画调色一样...原创 2018-04-10 19:40:03 · 320 阅读 · 0 评论 -
【学习笔记】吴恩达老师《深度学习工程师》一
TensorFlow的官方代码看来看去,发现最大的问题在于自己没有基本功,一天吃成胖子的想法告吹,回过头乖乖从基础开始。从吴恩达老师的深度学习工程师课程入手,配合周志华老师的《机器学习》“西瓜书”,打好基本功,再战TensorFlow!放一张吴恩达老师的照片,开开光,认真学完微专业!(吴恩达老师英语太好听了!(✧◡✧))皮一下,总觉得吴恩达老师长得有点像Z Nation的Pisay Pao。(*/...原创 2018-04-03 22:01:44 · 1115 阅读 · 0 评论 -
【学习笔记】吴恩达老师《深度学习工程师》四
第三课 logistic回归损失函数我们想使用sigmoid函数,将我们的输出结果介于0~1之间,那么我们就需要一个参数w,乘以我们的输入x,然后累加,从而实现我们的想法。如果我们某次的输出结果为,预期的输出结果为,自然得我们渴望得到,那么构建一个损失函数L,来衡量输出结果即可。 一般的,构建出的损失函数形为:但是这个函数在实践中发现,会出现局部最优解的问题,也就是说在梯度下降法中会出现多个最...原创 2018-04-11 11:45:15 · 300 阅读 · 0 评论 -
【学习笔记】吴恩达老师《深度学习工程师》五
第五课 导数这一节,吴老师用很好理解的方式介绍了导数,对于中国学生来说导数没有问题,老师讲解的方式很新颖。首先假设f(a)=3a,当a取2,f(a)=6,;这时稍微增大一下a的值,比如取2.001,此时f(a)=6.003,可见a增大0.001,f(a)增大0.003,是a增量的3倍,这里斜率就是3。(这种讲解方法简单易懂,o( ̄▽ ̄)d)再比如f(a)=a²,当a=2,f(a)=4;将a取为2....原创 2018-05-04 09:27:14 · 306 阅读 · 0 评论 -
【学习笔记】吴恩达老师第一周编程大作业总结
Logistic Regression with a Neural Network mindset用神经网络的思想来实现Logistic回归学习目标构建深度学习算法的基本结构,包括: 初始化参数 计算损失函数和它的梯度 使用优化算法(梯度下降法)将上述三种函数按照正确的顺序集中在一个主函数中1. 依赖包*numpy——python中用于科学计算的库,多用于计算矩阵*h...原创 2018-05-22 22:22:23 · 2697 阅读 · 6 评论