YOLOV8 关键点检测之数据集制作

系统是ubuntu

软件:labelme  (labelImg不可以)

注意一点:左上角点击文件-------取消选中同时保存图像数据---------点击选中自动保存

为了方便寻找标注完的图像,可以自己创一个文件夹,然后修改输出路径

重点是如何把生成的json文件转为yolo需要的txt格式,我这里用的大佬的代码,很简单,两步到位:

1.先把json文件进行分类:分为训练集和验证集

代码:

import os
import shutil
 
from tqdm import tqdm
import random
#此代码为划分json格式的训练文件的
 
""" 使用:只需要修改 1. Dataset_folde,    
                  2. os.chdir(os.path.join(Dataset_folder, 'images'))里的 images,
                  3. val_scal = 0.2
                  4. os.chdir('../label_json')          label_json换成自己json标签文件夹名称   """
 
 
# 图片文件夹与json标签文件夹的根目录
Dataset_folder = r'/home/zdkj/桌面/111'
 
# 把当前工作目录改为指定路径
os.chdir(os.path.join(Dataset_folder, 'images'))   # images : 图片文件夹的名称
folder = '.'                  # 代表os.chdir(os.path.join(Dataset_folder, 'images'))这个路径
imgs_list = os.listdir(folder)
 
random.seed(123)              # 固定随机种子,防止运行时出现bug后再次运行导致imgs_list 里面的图片名称顺序不一致
 
random.shuffle(imgs_list)     # 打乱
 
val_scal = 0.2                # 验证集比列
val_number = int(len(imgs_list) * val_scal)
val_files = imgs_list[:val_number]
train_files = imgs_list[val_number:]
 
print('all_files:', len(imgs_list))
print('train_files:', len(train_files))
print('val_files:', len(val_files))
 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值