联邦学习框架 FederatedScope(1)快速入门

本文介绍了FederatedScope联邦学习框架的基本概念和快速入门步骤,包括下载安装、依赖安装、数据集和模型准备、独立及分布式模式训练。在实践中遇到的坑如文档错误、配置问题等也进行了说明,提供了解决问题的线索。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

新鲜出炉的框架——两个月,暂时没什么教程,全程跟着官方文档走。

框架与文档可能存在一点小问题,以后肯定会改进,一切以当下事实为准。


简介

官网:https://federatedscope.io/

FederatedScope 采用事件驱动的编程范式,用于支持现实场景中联邦学习应用的异步训练,并借鉴分布式机器学习的相关研究成果,集成了异步训练策略来提升训练效率。具体而言,FederatedScope 将联邦学习看成是参与方之间收发消息的过程,通过定义消息类型以及处理消息的行为来描述联邦学习过程。

快速入门

跟着官方教程一步步操作就行, 虽然有坑。。。这里只记录一下注意事项。

下载安装

注意 torch、torchvision、Python 的版本对应(其实不需要管)

torch torchvision python
main / nightly main / nightly >=3.7, <=3.10
1.12.0 0.13.0 >=3.7, <=3.10
1.11.0 0.12.0 >=3.7, <=3.10
1.10.2 0.11.3 >=3.6, <=3.9
1.10.1 0.11.2 >=3.6, <=3.9
1.10.0 0.11.1 >=3.6, <=3.9
1.9.1 0.10.1 >=3.6, <=3.9
1.9.0
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值