上采样upsampling, 反池化unpooling, 转置卷积deconvolution

本文详细介绍了深度学习中的三种上采样技术:插值、反池化和转置卷积(反卷积),并对比了它们的区别。插值通过增加像素值实现图像放大,反池化保留最大值位置信息并补零,而转置卷积则在恢复特征图尺寸的同时保持位置关系。转置卷积在生成对抗网络(GAN)和编码器-解码器结构中有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

upsampling 上采样

可以翻译为上采样,与下采样对应,是一种增大图片分辨率的技术的统称
最常见的技术为插值,即把分辨率低的图片放大到需要的大小,再用插值的方法补齐像素的值。

unpooling 反池化

unpooling与pooling相对,那么可以翻译为反池化。与池化相反,是把图片从小变大的操作。
严格意义上来讲,池化过程中丢失了很多信息,是不可逆的。反池化只是一个近似恢复的操作。
在这里插入图片描述
如图所示,反池化只是保留了池化时最大值的位置信息,别的地方补零。那么这个和基于插值的上采样技术有什么区别呢?请看下图:
在这里插入图片描述
在插值的过程中,同样也保留了位置信息,但是其余的部分都使用相同的数字进行填充。

deconvolution 转置卷积

deconvolution常被翻译为反卷积,常用于卷积神经网络CNN中,指的是一种可以达到与卷积效果相反的运算,即从小的feature map反卷积到大的feature map上来。如下图所示:
在这里插入图片描述

但要注意的是,deconvolution并不是数学意义上convolution的逆操作,只是达到的效果相反罢了。

实际上,deconvolution为了达到与卷积相反的效果,只是乘以了一个与卷积矩阵位置相同矩阵的转置,所以比较好的翻译应该是转置卷积Transposed Convolution。转置卷积可以恢复到原来feature map的大小,但不可以完全与以前的feature map值相同。

这篇文章中对为什么叫“转置卷积”做了生动的说明。

转置卷积的目的除了上文中提到的扩大feature map的size,还有一个就是保证了在恢复过程中上下层feature map之间位置关系的对应性。一般来说,需要对原来的feature map先插值,后卷积。所以还有论文把其称作为Fractional Strided Convolution。

这篇博文中的图片给出了形象的解释,具体描述请参考其“普通卷积的计算过程”和“转置卷积(反卷积)的计算过程”两部分。

deconvolution的应用

转置卷积主要用于以下两方面:

  1. 在GAN生成样本;
  2. 使用编码器来提取特征时,在encoder后作decoder使用。

总结

upsampling只是一种把图片恢复到原始大小的一种技术的统称,具体手段有很多,此文中提到的插值/unpooling/deconvolution/都可以做到。


Renference:
3. What is the difference between Deconvolution, Upsampling, Unpooling, and Convolutional Sparse Coding?
4. 关于转置卷积(反卷积)的理解
5. 一文搞懂反卷积,转置卷积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值