7-10 一元二次方程求解

本题目要求一元二次方程ax2+bx+c=0的根,结果保留2位小数。

输入格式:

输入在一行中给出3个实数系数a、b、c,中间用空格隔开。

输出格式:

根据系数情况,输出不同结果:

1)如果方程有两个不相等的实数根,则按照格式"x1=大根,x2=小根"输出;

2)如果方程有两个不相等复数根,则按照格式"x1=实部+虚部i,x2=实部-虚部i"输出;

3)如果方程有相等根,则输出x1=x2=此根;

4)如果方程退化为一元一次方程,则输出"x=值”。

5)如果系数都为0,则为任意解,输出"Any Answer";

6)如果a和b为0,c不为0,则无解,输出"No Answer"。

7)结果保留两位小数。

输入样例1:

1 2 1

输出样例1:

x1=x2=-1.00

输入样例2:

3 4 5

输出样例2:

x1=-0.67+1.11i,x2=-0.67-1.11i
#include<stdio.h>
#include<math.h>
int main()
{
    int a,b,c,d;
    double x;
    scanf("%d %d %d",&a,&b,&c);
    x=b*b-4*a*c;
    d=b*b-a*c*4;
    if(a==0&&b==0&&c==0)
        printf("Any Answer");
    else if(a==0&&b==0&&c!=0)
        printf("No Answer");
    else if (a==0)
        printf("x=%.2lf",(double)-c/b);
    else if (a!=0&&b!=0&&c!=0)
    {
        if(d>0)
        {
            printf("x1=%.2lf,x2=%.2lf",(double)(-b+sqrt(x))/(2*a),(double)(-b-sqrt(x))/(2*a));
            }
        else if(d==0)
            printf("x1=x2=%.2lf",(double)-b/(2*a));
        else if(d<0)
            printf("x1=%.2lf+%.2lfi,x2=%.2lf-%.2lfi",(double)-b/(2*a),(double)sqrt(-x)/(2*a),(double)-b/(2*a),(double)sqrt(-x)/(2*a));
         }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值