【干货分享】从FiDRAG到GraphRAG,一文带你了解RAG选型终极指南

img

最近听到一个很有意思的观点:大数据时代已经结束了,取而代之,未来是中数据与RAG的时代。

之所以这么说,因为大模型的力量已经将大数据背后的潜力挖掘快到了尽头。

而所谓中数据,其实就是企业的私有数据和基于数据的认知。简单来说,对企业来说,优质数据越多、用得越好,未来在AI时代的竞争力就越。RAG,通过大模型+知识库\向量数据库的方式,成为了将这些中数据变现的最优解,很好解决了大模型不知道公司产品有多少型号,垂直领域知识不足等问题。

不过,一个很现实的问题是,RAG发展的速度实在太快了,选择多的让人眼花缭乱。

多文档场景用什么RAG?法律场景用什么RAG?学术研究和专利用什么RAG?多模态内容又要用什么RAG?

更细分一点,处理实时数据要怎么选型?步骤式决策怎么选型?结构化数据怎么选型……

对很多开发者来说,知道RAG好用,但却不知道哪个更适合自己,可能是一个共性问题。

本文选择了十大最值得关注的RAG工具,以及一个实用的评估框架,我们可以根据自身需求选择最合适的 RAG框架。

1 、快速参考:你应该选择哪种RAG?

传统的RAG系统由两个步骤组成:从由向量数据库(如Milvus)支持的知识库中检索相关数据作为上下文,并利用语言模型生成答案。

但这种Native RAG通常在面对复杂的查询时,会丢掉一些细节,导致生成的回答显得过于泛化,无法深入解决问题。

也是因此,近些年来,各种RAG变体层出不穷,主要的演化方向包括以下三个:

  • 动态决策检索步骤:与传统方法一次性检索所有数据的模式不同,新的RAG模型能够根据问题的具体需求,动态判断是否进行外部信息检索,显著提升了效率并减少了不必要的数据浪费。
  • 支持多模态数据:新型RAG不仅限于处理文本数据,还可以检索图像、视频等多模态数据,从而使得生成的内容更加丰富和全面,提升了上下文理解力和生成的准确性。
  • 优化资源使用:随着数据量的增加和查询复杂度的提升,现代RAG框架能够根据不同查询的资源需求灵活调整计算资源,避免了无效的计算开销。

这些创新使得RAG能够提供更准确、更具上下文理解力的输出,满足开发者和企业的不同需求。以下是主流RAG变体的简明概述:

img

2 、DeepRAG:动态检索决策,提升推理任务的精准度

DeepRAG用端到端训练的神经网络替代了传统的检索管道。它通过建模检索增强推理过程,动态地决定何时依赖外部数据,何时依赖内部推理。这种逐步决策的方法能够高效地填补知识空白。

通过改善推理任务的精确度,DeepRAG提高了8-15%的准确率,并且避免了不必要的检索,节省了计算资源。尽管它增加了系统设计的复杂性,并且需要微调以平衡检索频率,但它非常适合事实验证、多步骤推理任务和研究密集型领域(如法律和医学诊断支持)。

关键特点:

  • 动态检索:根据每一步的需要判断是否进行数据检索。
  • 战略决策:采用类似马尔可夫决策过程的方式进行决策。

GitHub: https://github.com/microsoft/deepRAG

论文:https://arxiv.org/html/2502.01142v1

3、 RealRAG:实时数据处理,提升图像生成的真实感

RealRAG增强了文本到图像的生成模型(例如Flux和Stable Diffusion V3),通过实时检索真实世界的图像来填补生成图像中的知识空白。它通过对比生成的图像和检索到的例子,提高了生成图像的真实性。

RealRAG在生成更逼真的图像方面表现优秀,尤其在产品设计和医学成像等领域,准确的视觉表现至关重要。虽然它需要高昂的基础设施成本来支持全天候的多模态处理,但对于高质量图像数据集有限的领域,它也可能面临挑战。

关键特点:

  • FID评分提升:在斯坦福汽车基准测试上提高了16.18%。
  • 图像检索:通过外部视觉数据增强生成的图像。
  • 自我反思学习:通过图像对比反馈来优化输出。

论文:https://arxiv.org/abs/2502.00848

4、 CoRAG:链式检索增强生成

CoRAG灵感来源于链式思维提示,它将查询分解为多个子问题,并按顺序检索相关信息。它根据查询的复杂性,调整检索的深度和广度,并重新构造查询。

通过顺序检索,CoRAG能够提高多层次查询的准确性,尤其适合处理技术故障排查或需要多层次信息的研究任务。

关键特点:

  • 顺序检索:分步检索数据,逐步完善答案。
  • 自适应计算分配:根据检索需求调整资源。

论文:https://arxiv.org/abs/2501.14342

5、 VideoRAG:视频内容的检索增强生成

传统的RAG系统主要针对文本数据,而VideoRAG扩展了RAG的能力,能够处理视频内容。它结合了视觉语言模型(如CLIP)和语音转文本、帧分析等技术,允许LLM理解并处理与视频相关的查询。比如,用户可以查询“找出包含情感冲突的场景”。

VideoRAG能够处理超长的视频数据而不影响准确性,其双通道架构有效处理文本和视觉数据。然而,它需要强大的GPU支持,且管理多模态数据流的复杂性较高。适用于视频内容分析、讲座总结等场景。

关键特点:

  • 双通道架构:分别处理文本和视频数据。
  • 无限长视频处理:在长视频中保持上下文一致性。

论文:https://arxiv.org/abs/2501.05874

GitHub:https://github.com/starsuzi/VideoRAG

6 、CFT-RAG:基于树形加速的RAG

CFT-RAG采用改进的Cuckoo过滤器和树形结构加速检索,特别适用于结构化数据(如CSV文件、SQL表格)。它能够快速定位关键信息,支持文本和图像的多模态检索,提升了检索的速度和精度。适合实时支持系统、欺诈检测和高频交易平台。

关键特点:

  • 树形结构:以层次树形结构组织信息,提高检索效率。
  • Cuckoo过滤器优化:加速检索过程,提升精度。

论文:https://arxiv.org/abs/2501.15098

7 、CG-RAG:基于图的上下文推理

CG-RAG通过使用知识图谱来捕捉实体(如人物、事件)之间的关系,增强了回答的上下文质量。它特别适用于复杂的学术研究和技术文档,通过图神经网络(GNN)进行图遍历,以捕捉概念之间的引用关系。

关键特点:

  • 图谱检索:将信息结构化为节点,并捕捉它们之间的关系。
  • 引用关系:增强对信息间关系的理解。

论文:https://arxiv.org/abs/2501.15067

8 、GFM-RAG:图神经网络驱动的RAG

GFM-RAG利用图神经网络(GNNs)对复杂的数据集进行多跳推理,适用于专利分析、科学研究等领域。它能够精准地连接不同文档之间的信息。

关键特点:

  • 图神经网络:对检索的数据进行语义增强。
  • 多跳推理:跨文档连接不同信息点。

论文:https://arxiv.org/abs/2502.01113

9、URAG:统一RAG

URAG结合了文本、图像、音频和视频的处理能力,适用于多模态数据的环境。它能够优化计算资源,特别适合计算资源有限的教育聊天机器人。

关键特点:

  • 模块化设计:支持组件的灵活替换。
  • 多格式支持:支持10种以上的数据格式。

论文:https://arxiv.org/abs/2501.16276

10、 GraphRAG: 基于图的检索增强生成

GraphRAG 通过引入图结构和图神经网络(GNN),提升了对复杂关系和上下文的理解,可以提高推理精度,捕捉节点间关系,此外能够整合文本、图像、音频等数据源,提供全面上下文。特别适合处理涉及实体关系的场景,比如法律(生成精准的法律解答)、学术研究(提取文献中的实体关系)、技术支持(提升故障分析的精准度)等复杂推理任务

其优点在于可以深入挖掘实体关系,生成上下文相关的答案,适用于精确推理的复杂任务。

其局限性则在于带来了图结构和GNN的额外计算开销,此外在构建高质量知识图谱的过程中,需要比较大的前期投入。

论文:https://arxiv.org/abs/2404.16130?utm_source=chatgpt.com

11、 Fusion-in-Decoder (FiD) RAG

与传统RAG相同,FiD首先从知识库中检索相关文档,接下来,FiD将所有检索到的文档信息合并,作为一个整体输入给生成模型,而不是逐一生成。最后,解码器会基于融合后的上下文生成答案,能够综合多来源的信息,提高生成质量。其优势在于能够做多文档融合,提高信息完整性,避免信息丢失,提高生成内容的精度,特别适用于处理多文档信息的复杂任务,如问答系统、文档总结、多文档整合(如学术研究、法律分析)

局限性则在于,处理多个文档信息会增加计算负担,多个文档中有重复信息时,可能影响生成质量,整体生成质量受限于检索结果的相关性和准确性。

论文:https://arxiv.org/abs/2212.08153

总结

这10种RAG变体代表了检索增强生成领域的最新进展。它们解决了AI系统在处理复杂任务时的精确性、速度和上下文理解等问题。随着RAG技术的不断演进,开发者可以根据需求选择合适的变体,应用于不同的领域和场景,解锁AI技术的新潜力。

通过Zilliz Cloud的托管Milvus服务,开发者可以轻松地部署这些先进的RAG变体,推动AI技术的发展,助力各行业创造更加智能和高效的系统。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值