近一两年,明显感觉到身边计划切入AI赛道的朋友多了起来。每次聚会聊到职业转型的规划,话题总会不自觉地聚焦在各种具体的焦虑上:“我刚报完大模型基础课程,是不是还得考个AI产品相关的认证,竞争力才够?”“听行业里的人说,现在招聘AI产品经理,连Python都不会的话,简历根本没人看?”“做AI产品是不是必须得懂算法,能跟算法工程师顺畅聊模型参数才行?”
每次听到这些相似的疑问,我总会想起自己刚转行做AI产品时的尴尬经历。印象最深的是第一次面试某互联网大厂的AI产品岗,面试官抛出一个问题:“你会如何评估推荐模型的实际效果?”当时我脑子里只有课本上学过的“准确率”“召回率”这些理论指标,完全想不到要结合业务场景提“可观测性指标”——比如用户点击推荐内容后的转化率、后续的复购率,最后只能支支吾吾地敷衍,心里满是慌乱。
如今再回头看,当年能顺利拿到offer,靠的并不是那些背得半生不熟的理论知识,而是一个自己折腾出来的“粗糙小项目”。那时候我还在传统行业做产品,公司客服团队每天要重复回复大量相似的用户咨询,比如“优惠券使用规则”“退货地址在哪里”,不仅效率低,还容易出错。我就想着能不能做一个简单的AI工具,自动匹配用户问题和标准答案。
因为没学过专业编程,我就用Cursor辅助写简单逻辑,用v0快速搭了个简陋的落地页,又对接了公开的基础问答API,花了整整三天时间,终于做出一个“能点按钮、能出答案”的原型。这个原型算不上精致,甚至偶尔会出小错——比如把“满200减30”的优惠券规则,错匹配成“满300减50”,但至少让面试官看到了关键的一点:我不是只会死记硬背概念,还能主动发现问题,并用AI工具尝试解决实际业务痛点。
在AI产品领域摸爬滚打这几年,从最开始跟着项目“摸瞎走”,连需求文档里的算法术语都要查半天,到后来慢慢摸透岗位逻辑,能独立推进AI相关功能落地,我越来越清晰地意识到:AI产品这个领域,根本不存在一条“标准入行路径”。很多人之所以迟迟不敢行动,就是被“要先学透技术”的焦虑困住了。其实与其纠结“到底要掌握多少技术才够”,不如带着好奇心先迈出第一步——哪怕从解决一个小场景的问题开始,比如给社区做个AI内容分类工具,给小店铺做个简单的智能客服原型。贴着用户找真实痛点,在不断试错、调整的过程中,自然能一步步蹚出属于自己的方向。
1 、先搞懂:AI产品经理不是“一个岗位”,三类方向核心诉求天差地别
刚入行时,我总觉得“AI产品经理”就是一个统一的头衔,直到跟着不同项目跑了大半年才发现:同样叫“AI产品”,有人天天跟算法工程师聊模型日志,有人盯着营销用户的创意痛点,还有人只需要用现成API优化现有功能——这三类方向的核心诉求,其实完全不一样。
第一种:AI平台产品经理——给技术团队做“效率工具”
简单说,这类产品经理的用户不是普通消费者,而是算法工程师、数据科学家。他们每天要解决的,是技术团队的“痛点”:比如模型突然“掉准”了,工程师得翻几百行日志才能找到原因;比如切换模型版本时,参数容易丢失,导致新模型跑不起来;再比如训练数据标注错了,得人工一条条核对,效率极低。
这类产品不用自己搭模型,但必须懂技术团队的“真实需求”。我之前接触过一个做AI平台的朋友,他们团队发现工程师“查模型问题”要花两小时,就做了个“模型问题定位功能”:自动标注异常数据、回溯API调用记录,甚至能标出“哪段数据导致模型准确率下降”——最后把工程师的排查时间压缩到了20分钟。对他们来说,“让技术团队少加班、多专注核心训练”,就是最大的价值。
第二种:AI Native产品经理——把AI技术“拆成用户能用的工具”
这是我一直聚焦的方向:不是“堆技术”,而是把AI能力拆解开,装进具体场景里,让非技术用户能直接上手。这两年我们团队没贪多,就扎在广告营销场景里,做了一系列针对性的AI工具,比如帮营销人解决“创意卡壳”“素材出得慢”的问题。
比如新品推广时,营销人不用懂“提示词工程”,打开工具就能输入“品牌调性(比如年轻潮流)+产品卖点(比如防水运动鞋)”,工具会自动生成适配抖音、小红书的创意脚本;生成脚本后,还能直接对接投放平台的“素材合规检查API”,避免出现“极限词”“违规画面”导致审核不过;甚至能根据过往跑量数据,推荐“哪个时间段发视频点击率更高”。
要做好这件事,得两头“吃透”:一方面要懂AI技术的“边界”——比如知道营销文案用基础LLM就能满足,不用微调;但要匹配品牌过往的话术风格,就需要用品牌历史文案做小样本微调;另一方面要摸准用户的“真痛点”——比如营销人不是“缺创意”,而是“缺能直接用的创意”,所以我们没做“开放式创意生成”,而是给每个脚本加了“卖点标注”,比如“这里突出防水性,适合加产品测试画面”,让用户拿到就能改、改完就能用。
第三种:AI + 产品经理——用AI“优化现有产品”
这类产品经理的核心不是“做新AI产品”,而是“给现有产品加AIbuff”。我之前在电商公司时就做过这类工作:给商品推荐模块加AI能力。
我们没自己搭推荐模型,而是用现成的推荐API,但重点在“优化逻辑”:比如新用户刚下载APP,没浏览记录,就推“平台热门商品”;老用户如果反复浏览某类商品却没下单,就推“同类性价比更高的款”;还加了“去重逻辑”——过滤掉用户已经看过3次以上的商品,避免“越推越烦”。
那段时间,我每天盯着数据:从“不分用户群的统一推荐”到“分层推荐”,再到调整“热门商品”和“个性化商品”的比例,最后把推荐模块的点击率提升了15%,复购率也涨了8%。对这类产品来说,“懂现有产品的痛点”比“懂AI技术”更重要——你不用知道推荐模型怎么训练,但要知道“用户为什么不点击推荐商品”。
其实不管哪类AI产品,核心逻辑都一样:AI只是工具,解决问题才是根本。我见过有人做的AI产品,又是多模态又是Agent,功能堆得满满当当,但用户用一次就再也不用——因为它没解决用户的核心需求;也见过有人就用一个简单的问答API,做了个“外卖商家自动回复工具”,帮商家省了一半回复时间,反而成了小爆款。
2 、想入行?别纠结“学多少技术”,先做个“能跑的原型”出来
经常有人问我“零基础怎么转AI产品”,我的答案永远是:“别先学深度学习,先找个小问题,用现成工具做个原型出来——哪怕它很粗糙。”
我当年就走了弯路:一开始跟风学吴恩达的深度学习课,记卷积神经网络的公式、背梯度下降的原理,越学越懵——感觉自己离“产品经理”越来越远,反而像个半吊子算法学生。直到一个前辈跟我说:“你不用知道模型怎么训练,你只要知道‘用什么模型能解决什么问题’,然后动手做个东西出来。”
这句话点醒了我。我开始琢磨身边的小痛点:那时候公司新媒体运营每天要花2小时整理竞品推文的关键词,比如“某品牌新出的口红主打‘持久不沾杯’”“某竞品在推‘买一送一’活动”,我就想:能不能做个工具,自动提取竞品推文里的“产品卖点”“活动信息”?
没学过代码,我就用ChatGPT生成关键词提取的基础逻辑,用Replit快速跑通流程,再用Canva做了个简单的结果展示界面——花了两天时间,做出一个“能上传推文链接、能出关键词列表”的原型。虽然偶尔会把“哑光口红”提取成“哑光眼影”,但我拿着这个原型去面试时,面试官没问我“什么是反向传播”,反而问:“你做这个工具时,怎么确认运营真的需要它?”“如果关键词提取错了,你会怎么优化?”——这些恰恰是产品经理该思考的核心问题。
现在入行比我那时候容易多了:不用学复杂代码,Replit能快速生成应用,Midjourney能画界面草图,NotebookLM能分析用户反馈,甚至ChatGPT插件能直接帮你写基础逻辑。我前阵子帮一个想转行的朋友梳理方向,他用Replit搭框架,对接了基础的邮件解析API,花了两小时就做了个“自动整理工作邮件、标注待办事项”的小工具——虽然简单,但足够用来聊“产品思路”。
当然,基础的AI知识还是要懂的,但不用“死磕原理”:比如你得知道LLM有“幻觉”,所以做问答工具时要加“来源标注”,告诉用户答案来自哪份资料;你得知道RAG的知识库需要更新,所以做产品手册问答时,要设置“每月更新一次知识库”;你得知道Agent的“任务拆解能力有限”,所以做复杂工具时,要给用户“手动调整步骤”的选项。这些知识不用报班学,看几篇Andrej Karpathy的LLM入门文章、刷几个行业案例视频,就能搞懂——关键是把这些知识和你做的原型结合起来,比如你知道模型有“上下文限制”,就会在工具里提示“单次输入不超过500字”,这就是产品思维的体现。
招聘时,面试官其实不关心你“学过多少课”,更关心你“做过什么、思考过什么”——一个粗糙但有思考的原型,远比一叠证书更有说服力。
3 、想成为优秀的AI产品经理?别跟风热点,要“贴地飞行”
这两年AI行业的热点就像走马灯:从ChatGPT火的时候大家都做“对话机器人”,到AI Agent热的时候都做“一站式工具”,再到多模态火的时候都堆“图片+文字+视频”功能——但我发现,真正能留住用户的AI产品,从来不是“跟着热点跑”,而是“贴地飞行”:贴着用户的真实需求,找到那些别人没注意到的“小痛点”。
去年大家都在做AI Agent,我们团队一开始也想做个“一站式营销Agent”:能写脚本、剪视频、投素材,甚至能自动分析投放数据。但聊了5个营销用户后,我们发现了问题:有4个用户说“每天要管10个产品的投放,根本没时间学复杂的Agent操作,我就想要‘能直接用的创意点子’,不用自己调参数、改步骤”。
后来我们果断放弃了“一站式”的想法,聚焦在“营销创意情报”上:自动采集同品类、竞品的跑量素材,分析“哪些卖点容易火”“哪些画面点击率高”,再结合用户自己的产品知识库,生成“带数据支撑的创意建议”——比如“最近同类产品‘防脱效果’的素材跑量好,你可以在脚本里加‘7天防脱测试’的画面”。上线后用户留存率比预期高了40%,因为我们没堆技术,而是刚好解决了“创意易枯竭、没数据支撑不敢拍”的真痛点。
另外,好的AI产品经理还要学会“一边做核心项目,一边攒‘小灵感’”。我每周都会拉团队拆一个前沿AI产品,不是为了“跟风做同款”,而是为了“学思路”:比如拆Figma的AI设计插件时,发现它有个“设计风格一键迁移”功能——能把A产品的设计风格,直接套用到B产品的素材上,我们把这个思路用到了电商素材裂变工具里,让用户能“把一款连衣裙的素材风格,迁移到同品牌的T恤上”,最后用户效率提升了30%;再比如拆Websim时,它的“实时数据反馈”逻辑给了我们启发,后来在创意工具里加了“脚本生成后,实时显示‘同类脚本的平均点击率’”,让用户能快速判断“这个脚本值不值得用”。
还有一点很重要:要接受“AI产品的试错率更高”。AI技术的不确定性比传统产品大得多——你觉得好的功能,用户可能不买账;你觉得没问题的设计,可能会出各种意外。我之前做过一个AI客服机器人,上线后发现南方方言的识别率特别低,有用户反馈“我说‘要退贷(货)’,机器人一直问‘您要办理贷款吗’”。
那时候我们没直接下架功能,而是先收集了2000多条方言对话数据,分“吴语、粤语、川语”等区域做小模型训练,还加了“方言提示功能”——用户进入对话时,提示“说方言可以加关键词,比如‘退货(方言)’”。最后方言识别率从30%提升到了90%,还收获了一批“觉得机器人懂方言很亲切”的用户。现在回头看,这些试错不是“浪费时间”,而是帮我们更懂用户的“隐性需求”。
4、 做AI产品这几年:能量、游走,还有享受“解决问题的快乐”
从转行到现在,做AI产品的每一天都像“在不确定里找确定”,但有三点感悟,我觉得比任何技巧都重要。
第一是“能量”——和团队一起扛住“卡壳时刻”
AI产品的迭代节奏快,经常会遇到“突发状况”:比如上线前模型突然延迟,用户加载时间从1秒变成5秒;比如新功能上线后,用户反馈“AI生成的答案全是错的”;再比如算法工程师加班一周,模型准确率还是没达标。
去年有次项目上线前三天,模型突然出现“批量错误”——生成的营销脚本全是“重复句子”。那时候团队都很焦虑,有工程师甚至说“要不延期上线吧”。我没说“必须按时上”,而是每天早上先和技术团队一起梳理问题:第一天排查API调用,发现是接口超时;第二天优化参数,结果准确率又掉了;第三天我们换了个思路,加了“句子去重逻辑”,终于解决了问题。那段时间我每天买夜宵陪大家加班,哪怕只是“今天解决了‘句子重复’的小问题”,也会在会上提一句——其实“能量”不是“喊口号”,而是让团队觉得“你和他们一起在解决问题”,这种信任感比什么都重要。
第二是“游走”——在不确定里找“有效信号”
AI领域的变化太快了,很多时候你不知道“该往哪个方向走”,这时候不能等着“技术成熟了再做”,而是要主动“游走”:找用户聊、试新工具、做小范围测试,从碎片信息里找“有效信号”。
比如去年我们纠结“要不要做多模态功能”,既怕技术不成熟,又怕错过机会。我没直接拍板,而是先约了3个做多模态的朋友喝咖啡,了解“现在多模态能解决什么问题、有什么坑”;然后做了个小原型,在100个用户里测试“图片+文字的创意笔记功能”——结果有60%的用户反馈“能贴图片记投放思路,比纯文字方便”。有了这个信号,我们才决定投入资源做多模态,最后上线的“图片标注投放效果”功能,成了用户留存的关键。这种“游走”不是“瞎折腾”,而是在不确定里找“小确幸”,再把“小确幸”变成“大方向”。
第三是“享受过程”——别只盯着KPI,要喜欢“解决问题的快乐”
做AI产品压力很大:有时候产品上线后数据不好,会怀疑“是不是方向错了”;有时候调了很久的功能,用户还是不买账,会沮丧“是不是自己能力不行”。
我之前也总盯着KPI,直到老板跟我说:“你要享受‘解决问题的过程’,而不是只看‘结果好不好’。”后来我慢慢发现:当我优化了“创意脚本复用率”,从20%涨到40%,营销用户特地来跟我说“现在不用每天写新脚本了,能早点下班”时,那种成就感比看KPI涨了更开心;当我解决了“方言识别”的问题,收到用户说“终于不用跟机器人说普通话了”时,那种满足感比拿奖金更实在。
现在我没事就会试新的AI工具,不是为了“学技术”,而是觉得“有意思”——比如试AI设计工具时,会想“这个交互能不能用到我们的素材工具里”;试AI写作工具时,会想“这个提示词逻辑能不能帮用户更快生成脚本”。这种“好奇心驱动”的状态,反而让我更有动力。
5 、最后:给想入行的朋友一句话
如果现在有人问我“怎么成为AI产品经理”,我会跟他说:“别纠结‘要学多少技术、要考多少证书’,先找一个你身边的小问题——比如帮同事解决‘整理数据慢’的问题,帮朋友解决‘写文案卡壳’的问题,用手头的工具做个能跑的原型出来。不用怕粗糙,不用怕犯错,因为这个行业不缺‘懂理论的人’,缺的是‘愿意动手、愿意贴近用户的人’。”
我转行做AI产品,没有什么捷径:靠的是“看到痛点就想试试解决”的好奇心,靠的是“做不出原型就熬夜查工具”的韧劲,靠的是“用户说‘这个工具好用’时的成就感”。这几年下来,我越来越清楚:AI只是一个工具,就像以前的互联网、现在的小程序一样,真正重要的是你能不能用这个工具,解决用户的真问题;能不能和团队一起,做出让用户“用了还想用”的产品。
就像张小龙说的:“好的产品是用完即走,因为它帮用户解决了问题。”做AI产品也一样:不用跟风堆功能,不用追求“高大上”,找到你想解决的小问题,动手试试,享受过程,慢慢就会找到自己的节奏。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
为什么要学习大模型?
我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!